K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 6 2017

chọc mù mắt tôi đi,,,bạn làm cái j thế

a, Đặt \(x^2=t\left(t\ge0\right)\)=> \(t^2-2mt+2m-1=0\)<=> \(\left(t-1\right)\left(t+1\right)-2m\left(t-1\right)=0\)<=> \(\orbr{\begin{cases}t=1\\t=2m-1\end{cases}}\)Mà \(t\ge0\), phương trình có 4 nghiệm phân biệt => \(m\ge\frac{1}{2},m\ne1\)Phương trình có 4 nghiệm \(S=\left\{-1,-\sqrt{2m-1},1,\sqrt{2m-1}\right\}\)2 trường hợp TH1   \(-\sqrt{2m-1}< -1< 1< \sqrt{2m-1}\)(x1<x2<x3<x4)=> \(2\sqrt{2m-1}=3.2\)=> m=5(thỏa mãn ĐK)Hoặc \(-1< -\sqrt{2m-1}<...
Đọc tiếp

a, Đặt \(x^2=t\left(t\ge0\right)\)

=> \(t^2-2mt+2m-1=0\)

<=> \(\left(t-1\right)\left(t+1\right)-2m\left(t-1\right)=0\)

<=> \(\orbr{\begin{cases}t=1\\t=2m-1\end{cases}}\)

Mà \(t\ge0\), phương trình có 4 nghiệm phân biệt => \(m\ge\frac{1}{2},m\ne1\)

Phương trình có 4 nghiệm \(S=\left\{-1,-\sqrt{2m-1},1,\sqrt{2m-1}\right\}\)

2 trường hợp

 TH1   \(-\sqrt{2m-1}< -1< 1< \sqrt{2m-1}\)(x1<x2<x3<x4)

=> \(2\sqrt{2m-1}=3.2\)=> m=5(thỏa mãn ĐK)

Hoặc \(-1< -\sqrt{2m-1}< \sqrt{2m-1}< 1\)

=> \(2=6\sqrt{2m-1}\)=> \(m=\frac{5}{9}\)(thỏa mãn ĐK)

Vậy \(m=\frac{5}{9},m=5\)

b, Đặt \(x^2=t\left(t\ge0\right)\)=> \(x_1^2=x_2^2,x_3^2=x_4^2\)

=> \(t^2-2\left(2m+1\right)t+4m^2=0\)

Phương trình có 2 nghiệm không âm 

\(\hept{\begin{cases}\Delta'\ge0\\2m+1>0\\4m^2\ge0\end{cases}}\)=> \(m\ge-\frac{1}{4}\)

Áp dụng hệ thức vi-et ta có 

\(\hept{\begin{cases}t_1+t_2=2\left(2m+1\right)\\t_1t_2=4m^2\end{cases}}\)

Theo đề bài ta có 

\(2\left(t_1^2+t_2^2\right)=17\)

=> \(2\left[4\left(2m+1\right)^2-8m^2\right]=17\)

=> \(16m^2+32m-9=0\)

=> \(\orbr{\begin{cases}m=\frac{1}{4}\\m=-\frac{9}{4}\end{cases}}\)

Kết hợp với ĐK

=> \(m=\frac{1}{4}\)

Vậy m=1/4

 

0
5 tháng 4 2019

m.n giúp mk nha mk đang cần gấp thank's!!! >.<

6 tháng 4 2019

Ai giúp mình đi mình sắp phải nộp rùi T.T thanks! :-)

20 tháng 8 2020

:3 em từ olm sang đây có gì sai thì chỉ bảo

Áp dụng bất đẳng thức \(\left(x+y+z\right)^2\ge3\left(xy+yz+zx\right)\forall x;y;z\inℝ\)

ta có \(\left(ab+bc+ca\right)^2\ge3abc\left(a+b+c\right)=9abc>0\Rightarrow ab+bc+ca\ge3\sqrt{abc}\)Ta lại có \(\left(1+a\right)\left(1+b\right)\left(1+c\right)\ge\left(1+\sqrt[3]{abc}\right)^3\forall a;b;c>0\)

Thật vậy \(\left(1+a\right)\left(1+b\right)\left(1+c\right)=1+\left(a+b+c\right)+\left(ab+bc+ca\right)+abc\)

\(\ge1+3\sqrt[3]{abc}+3\sqrt[3]{\left(abc\right)^2}+abc=\left(1+\sqrt[3]{abc}\right)^3\)

Khi đó \(P\le\frac{2}{3\left(1+\sqrt{abc}\right)}+\frac{\sqrt[3]{abc}}{1+\sqrt[3]{abc}}+\frac{\sqrt{abc}}{6}\)

Đặt \(\sqrt[6]{abc}=t\Rightarrow\sqrt[3]{abc}=t^2,\sqrt{abc}=t^3\)

Vì a,b,c > 0 nên 0<abc \(\le\left(\frac{a+b+c}{3}\right)^2=1\Rightarrow0< t\le1\)

Xét hàm số \(f\left(t\right)=\frac{2}{3\left(1+t^3\right)}+\frac{t^2}{1+t^2}+\frac{1}{6}t^3;t\in(0;1]\)

\(\Rightarrow f'\left(t\right)=\frac{2t\left(t-1\right)\left(t^5-1\right)}{\left(1+t^3\right)^2\left(1+t^2\right)^2}+\frac{1}{2}t^2>0\forall t\in(0;1]\)

Do hàm số đồng biến trên (0;1] nên \(f\left(t\right)< f\left(1\right)\Rightarrow P\le1\)

\(\Rightarrow\frac{2}{3+ab+bc+ca}+\frac{\sqrt{abc}}{6}+\sqrt[3]{\frac{abc}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}}\le1\)

Dấu ''='' xảy ra khi \(a=b=c=1\)

AH
Akai Haruma
Giáo viên
5 tháng 8 2020

Bài 2 bạn xem viết có sai đề không?

1 tháng 10 2019

Ta co:\(\Sigma\frac{x\left(yz+1\right)^2}{z^2\left(zx+1\right)}=\Sigma\frac{\left(y+\frac{1}{z}\right)^2}{z+\frac{1}{x}}\ge\frac{\left(x+y+z+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2}{x+y+z+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}}=x+y+z+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)Ta lai co:

\(\Sigma x+\Sigma\frac{1}{x}=\Sigma\left(x+\frac{1}{4x}\right)+\frac{3}{4}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge3+\frac{3}{4}.\frac{9}{x+y+z}\ge3+\frac{3}{4}.\frac{9}{\frac{3}{2}}=\frac{15}{2}\)

Dau '=' xay ra khi \(x=y=z=\frac{1}{2}\)

Vay \(P_{min}=\frac{15}{2}\)khi \(x=y=z=\frac{1}{2}\)

1 tháng 10 2019

mấy câu trên bn giải đc k ak ? Giải giúp mik vs :3

21 tháng 8 2019

svtkvtm Trần Thanh Phương DƯƠNG PHAN KHÁNH DƯƠNG

22 tháng 3 2016

bn chờ chút nhé mình đg bận

22 tháng 3 2016

Thằng thắng nó giải tùm  lum đấy coi chừng bị lừa đểu

NV
30 tháng 6 2020

Theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=\frac{b}{a}=\frac{ab}{a^2}>0\\x_1x_2=\frac{b}{a}=\frac{ab}{a^2}>0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x_1>0\\x_2>0\end{matrix}\right.\)

\(\sqrt{\frac{x_1}{x_2}}+\sqrt{\frac{x_2}{x_1}}-\sqrt{\frac{b}{a}}=\frac{x_1+x_2}{\sqrt{x_1x_2}}-\sqrt{\frac{b}{a}}=\frac{\frac{b}{a}}{\sqrt{\frac{b}{a}}}-\sqrt{\frac{b}{a}}=\sqrt{\frac{b}{a}}-\sqrt{\frac{b}{a}}=0\)

29 tháng 7 2019

a.

\(A=\left(\frac{\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-2\right)}-\frac{\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-2\right)}\right)\cdot\left(x-\sqrt{x}-2\sqrt{x}+2\right)\\ =\left(\frac{\sqrt{x}+1-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-2\right)}\right)\cdot\left[\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)\right]\\ =\frac{1}{\sqrt{x}\left(\sqrt{x}-2\right)}\cdot\left[\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)\right]\\ =\frac{\sqrt{x}-1}{\sqrt{x}}\)

b.

\(A=\frac{\sqrt{x}-1}{\sqrt{x}}< \frac{1}{2}\\ \Leftrightarrow\frac{\sqrt{x}-1}{\sqrt{x}}-\frac{1}{2}< 0\\ \Leftrightarrow\frac{2\left(\sqrt{x}-1\right)-\sqrt{x}}{2\sqrt{x}}< 0\\ \Leftrightarrow\frac{\sqrt{x}-2}{2\sqrt{x}}< 0\\ \Leftrightarrow\sqrt{x}-2< 0\\ \Leftrightarrow x< 4\)

Vậy với 0<x<4 thì A < \(\frac{1}{2}\)

c. Ta có \(A=\frac{\sqrt{x}-1}{\sqrt{x}}=1-\frac{1}{\sqrt{x}}\)

Để A đạt giá trị nguyên thì \(1⋮\sqrt{x}\Leftrightarrow\sqrt{x}\inƯ\left(1\right)\)

\(\sqrt{x}>0\forall x>0\Rightarrow x=1\)

Vậy với x=1 thì A đạt giá trị nguyên