Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) x + \(\sqrt{\left(x-2^{ }\right)^2}\)= x +\(|x-2|\)= x +2-x (vì x<2)
b) \(\sqrt{\left(x-3\right)^2}\)-x = \(|x-3|-x=x-3-x\) (vì x>3)
c) m- \(\sqrt{m^2-2m+1}=m-\sqrt{\left(m-1\right)^2}\)
Những con còn lại bạn làm như trên và rút gọn đi là được
d: \(=x+y-\left|x-y\right|\)
=x+y-x+y=2y
e: \(=\left|5a-1\right|-4a=\left|5\cdot\dfrac{1}{2}-1\right|-2\)
\(=\dfrac{5}{2}-1-2=\dfrac{5}{2}-3=-\dfrac{1}{2}\)
f: \(=\left|2a-3\right|-4a-1\)
\(=\left|-10-3\right|-4\cdot\left(-5\right)-1=13+20-1=32\)
a) Đặt \(\sqrt{x}=a\) (a >/0, a khác +-1)
Ta có: \(Q=\dfrac{a^2+a+1}{a^2+1}:\left(\dfrac{1}{a-1}-\dfrac{2a}{a^3+a-a^2-1}\right)\)
\(=\dfrac{a^2+a+1}{a^2+1}:\dfrac{a^2+1-2a}{\left(a^2+1\right)\left(a-1\right)}\)
\(=\dfrac{a^2+a+1}{a^2+1}\cdot\dfrac{\left(a^2+1\right)\left(a-1\right)}{\left(a-1\right)^2}\)
\(=\dfrac{a^2+a+1}{a-1}\)
\(\Rightarrow Q=\dfrac{x+\sqrt{x}+1}{\sqrt{x}-1}\)
b) \(Q>1\Leftrightarrow x+\sqrt{x}+1>\sqrt{x}-1\Leftrightarrow\sqrt{x}+2>0\) (luôn đúng)
=> Q > 0 với mọi x >/0, x khác +-1
a) \(P=\left(\dfrac{2}{\sqrt{1+a}}+\sqrt{1-a}\right):\left(\dfrac{2}{\sqrt{1-a^2}}+1\right)\)
\(=\dfrac{2+\sqrt{1+a^2}}{\sqrt{1+a}}\cdot\dfrac{\sqrt{1-a^2}}{2+\sqrt{1-a^2}}=\sqrt{1-a}\)
b) \(a=\dfrac{24}{49}\Rightarrow P=\sqrt{1-\dfrac{24}{49}}=\sqrt{\dfrac{25}{49}}=\dfrac{5}{7}\)
c) \(P=2\Leftrightarrow\sqrt{1-a}=2\Leftrightarrow1-a=4\Leftrightarrow a=-3\left(L\right)\)
kl;...