Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
Đường tròn \(\left(C_1\right)\) tâm \(\left(1;2\right)\) bán kính \(R=2\)
a/ Không hiểu đề bài, bạn ghi rõ thêm ra được chứ?
Tiếp tuyến đi qua giao điểm của \(\Delta_1;\Delta_2\) hay tiếp tuyến tại các giao điểm của \(\Delta_1\) và \(\Delta_2\) với đường tròn?
b/ Lại không hiểu đề nữa, điểm I trong tam giác \(IAB\) đó là điểm nào vậy bạn?
Bài 1b/
\(\Delta'\) nhận \(\left(2;1\right)\) là 1 vtpt
Gọi vtpt của d' có dạng \(\left(a;b\right)\Rightarrow\frac{\left|2a+b\right|}{\sqrt{2^2+1^2}.\sqrt{a^2+b^2}}=\frac{1}{\sqrt{2}}\)
\(\Leftrightarrow\sqrt{2}\left|2a+b\right|=\sqrt{5\left(a^2+b^2\right)}\Leftrightarrow2\left(2a+b\right)^2=5\left(a^2+b^2\right)\)
\(\Leftrightarrow3a^2+8ab-3b^2=0\Rightarrow\left[{}\begin{matrix}a=-3b\\3a=b\end{matrix}\right.\)
\(\Rightarrow\) d' có 2 vtpt thỏa mãn là \(\left(3;-1\right)\) và \(\left(1;3\right)\)
TH1: d' có pt dạng \(3x-y+c=0\)
\(d\left(I;d'\right)=R\Leftrightarrow\frac{\left|3.1-3+c\right|}{\sqrt{3^2+1^2}}=2\Rightarrow c=\pm2\sqrt{10}\)
\(\Rightarrow\left[{}\begin{matrix}3x-y+2\sqrt{10}=0\\3x-y-2\sqrt{10}=0\end{matrix}\right.\)
TH2: d' có dạng \(x+3y+c=0\)
\(d\left(I;d'\right)=R\Leftrightarrow\frac{\left|1+3.3+c\right|}{\sqrt{10}}=2\Leftrightarrow\left|c+10\right|=2\sqrt{10}\Rightarrow c=-10\pm2\sqrt{10}\)
\(\Rightarrow\left[{}\begin{matrix}x+3y-10+2\sqrt{10}=0\\x+3y-10-2\sqrt{10}=0\end{matrix}\right.\)
mk chỉ cho cách lm ; bn tự lm cho bt nha
câu a : lập bảng sét dấu tìm được \(x\) để \(y>0;y< 0\)
tiếp là đưa nó về dạng bình phương 1 số cộng 1 số \(\left(n^2+m\right)\) rồi tìm \(y_{min}\)
câu b : giao điểm của \(\left(P\right)\) và đường thẳng \(\left(d\right):y=2x+1\)
là nghiệm của hệ phương trình : \(\left\{{}\begin{matrix}y=x^2-2x-1\\y=2x+1\end{matrix}\right.\)
Bài 2:
Tọa độ giao điểm của Δ1 và Δ2 là:
\(\left\{{}\begin{matrix}2x+y=4\\5x-2y=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{5}{9}\\y=\dfrac{26}{9}\end{matrix}\right.\)
Thay x=5/9 và y=26/9 vào Δ3, ta được:
\(\dfrac{5}{9}m+\dfrac{26}{3}-2=0\)
=>5/9m=-20/3
hay m=-12
a) \(\Delta\)=\((m)^{2} -4(m-2)=m^2-4m+8=(m-2)^2+4 >0\)với mọi m \(\Rightarrow\)pt (1) luôn có nghiệm phân biệt với mọi m.
b)Do pt (1) có 2 ng pb với mọi m \(\Rightarrow\)áp dụng Vi_et ta có:
\(\begin{cases} x1+x2=m\\ x1.x2=m-2\end{cases}\).Pt (1) trở thành :
\(2[(x1+x2)^2-2x1.x2]-x1.x2=2(m-\frac{5}{4})^2+\frac{55}{8} \geq \frac{55}{8}\)với mọi m. GTNN của (1) là 55/8 khi và chỉ khi m=5/4
\(a=1>0\); \(-\frac{b}{2a}=m+\frac{1}{m}\ge2>1\)
\(\Rightarrow\) Hàm số đã cho nghịch biến trên \(\left[-1;1\right]\)
\(\Rightarrow y_1=\max\limits_{\left[-1;1\right]}f\left(x\right)=f\left(-1\right)=3m+\frac{2}{m}+1\)
\(y_2=f\left(1\right)=-m-\frac{2}{m}+1\)
\(\Rightarrow y_1-y_2=4m+\frac{4}{m}=8\)
\(\Leftrightarrow m^2-2m+1=0\Rightarrow m=1\)
Đường thẳng Δ1 có vectơ pháp tuyến là .
Đường thẳng Δ2 có vectơ pháp tuyến là .
Hai đường thẳng vuông góc khi và chỉ khi
Suy ra : m( m-1) + m+ 1= 0 hay m2+1 = 0 phương trình vô nghiệm.
Vậy không có giá trị của m để hai đường thẳng vuông góc.
Chọn C.