K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 5 2023

\(\dfrac{55-x}{1963}+\dfrac{50-x}{1968}+\dfrac{45-x}{1973}+\dfrac{40-x}{1978}+4=0\)

\(\Rightarrow\text{ }\dfrac{55-x}{1963}+\dfrac{50-x}{1968}+\dfrac{45-x}{1973}+\dfrac{40-x}{1978}+1+1+1+1=0\)

\(\Rightarrow\text{ }\left(\dfrac{55-x}{1963}+1\right)+\left(\dfrac{50-x}{1968}+1\right)+\left(\dfrac{45-x}{1973}+1\right)+\left(\dfrac{40-x}{1978}+1\right)=0\)

\(\Rightarrow\text{ }\dfrac{2018-x}{1963}+\dfrac{2018-x}{1968}+\dfrac{2018-x}{1973}+\dfrac{2018-x}{1978}=0\)

\(\Rightarrow\text{ }\left(2018-x\right)\left(\dfrac{1}{1963}+\dfrac{1}{1968}+\dfrac{1}{1973}+\dfrac{1}{1978}\right)=0\)

Mà \(\dfrac{1}{1963}+\dfrac{1}{1968}+\dfrac{1}{1973}+\dfrac{1}{1978}\ne0\)

\(\Rightarrow\text{ }2018-x=0\)

\(\Rightarrow\text{ }x=2018-0\)

\(\Rightarrow\text{ }x=2018\)

Vậy, \(x=2018.\)

1 tháng 12 2017

\(\dfrac{45-x}{1963}+\dfrac{40-x}{1968}+\dfrac{35-x}{1973}+\dfrac{30-x}{1978}+4=0\)

\(\Rightarrow\dfrac{45-x}{1963}+\dfrac{40-x}{1968}+\dfrac{35-x}{1973}+\dfrac{30-x}{1978}=-4\)

\(\Rightarrow\left(\dfrac{45-x}{1963}+1\right)+\left(\dfrac{40-x}{1968}+1\right)+\left(\dfrac{35-x}{1973}+1\right)+\left(\dfrac{30-x}{1978}+1\right)=-4+1+1+1+1\)

\(\Rightarrow\dfrac{2008-x}{1963}+\dfrac{2008-x}{1968}+\dfrac{2008-x}{1973}+\dfrac{2008-x}{1978}=0\)

\(\dfrac{1}{1963}+\dfrac{1}{1968}+\dfrac{1}{1973}+\dfrac{1}{1978}\ne0\) nên 2008 - x = 0

\(\Rightarrow x=2008\)

1 tháng 12 2017

thank bạn nha

24 tháng 12 2017

Đề sai:

\(\dfrac{45-x}{1968}+\dfrac{40-x}{1973}+\dfrac{35-x}{1978}+\dfrac{30-x}{1983}=-4\)

\(\Rightarrow\left(\dfrac{45-x}{1968}+1\right)+\left(\dfrac{40-x}{1973}+1\right)+\left(\dfrac{35-x}{1978}+1\right)+\left(\dfrac{30-x}{1983}+1\right)=0\)

\(\Rightarrow\dfrac{2013-x}{1968}+\dfrac{2013-x}{1973}+\dfrac{2013-x}{1978}+\dfrac{2013-x}{1983}=0\)

\(\Rightarrow\left(2013-x\right)\left(\dfrac{1}{1968}+\dfrac{1}{1973}+\dfrac{1}{1978}+\dfrac{1}{1983}\right)=0\)

\(\dfrac{1}{1968}+\dfrac{1}{1973}+\dfrac{1}{1978}+\dfrac{1}{1983}\ne0\) nên \(2013-x=0\Leftrightarrow x=2013\)

19 tháng 6 2020

\(\frac{55-x}{1963}+\frac{50-x}{1968}+\frac{45-x}{1973}+\frac{40-x}{1978}+4=0\)

\(\Leftrightarrow\left(\frac{55-x}{1963}+1\right)+\left(\frac{50-x}{1968}+1\right)+\left(\frac{45-x}{1973}+1\right)+\left(\frac{40-x}{1978}+1\right)=0\)

\(\Leftrightarrow\frac{2018-x}{1963}+\frac{2018-x}{1968}+\frac{2018-x}{1973}+\frac{2018-x}{1978}=0\)

\(\Leftrightarrow\left(2018-x\right).\left(\frac{1}{1963}+\frac{1}{1968}+\frac{1}{1973}+\frac{1}{1978}\right)=0\)

\(\Leftrightarrow2018-x=0\)

\(\Leftrightarrow x=2018\)

Vậy \(x=2018\)

Dễ dàng :v

Có \(\frac{55-x}{1963}+\frac{50-x}{1968}+\frac{45-x}{1973}+\frac{40-x}{1978}+4=0\)

\(\Rightarrow\left(\frac{55-x}{1963}+1\right)+\left(\frac{50-x}{1968}+1\right)+\left(\frac{45-x}{1973}+1\right)+\left(\frac{40-x}{1978}+1\right)=0\)

\(\Rightarrow\frac{2018-x}{1963}+\frac{2018-x}{1968}+\frac{2018-x}{1973}+\frac{2018-x}{1978}=0\)

\(\Rightarrow\left(2018-x\right)\left(\frac{1}{1963}+\frac{1}{1968}+\frac{1}{1973}+\frac{1}{1978}\right)=0\)

Mà \(\Rightarrow\left(\frac{1}{1963}+\frac{1}{1968}+\frac{1}{1973}+\frac{1}{1978}\right)>0\Rightarrow2018-x=0\)

\(\Rightarrow x=2018-8=2018\)

Vậy x = 2018

27 tháng 2 2018

196345−x​+196840−x​+197335−x​+197830−x​=−4
\left(\frac{45-x}{1963}+1\right)+\left(\frac{40-x}{1968}+1\right)+\left(\frac{35-x}{1973}+1\right)+\left(\frac{30-x}{1978}+1\right)=0(196345−x​+1)+(196840−x​+1)+(197335−x​+1)+(197830−x​+1)=0
\frac{2008-x}{1963}+\frac{2008-x}{1968}+\frac{2008-x}{1973}+\frac{2008-x}{1978}=019632008−x​+19682008−x​+19732008−x​+19782008−x​=0
\left(2008-x\right)\left(\frac{1}{1963}+\frac{1}{1968}+\frac{1}{1973}+\frac{1}{1978}\right)=0(2008−x)(19631​+19681​+19731​+19781​)=0
=> 2008 - x = 0 ( vì 1/ 1963 + ... khác 0 )
=> x = 2008

Ta có : \(\frac{45-x}{1963}+\frac{40-x}{1968}+\frac{35-x}{1973}+\frac{30-x}{1978}+4=0\)

\(\Leftrightarrow\frac{45-x}{1963}+1+\frac{40-x}{1968}+1+\frac{35-x}{1973}+1+\frac{30-x}{1978}=0\)

\(\Leftrightarrow\frac{2008-x}{1963}+\frac{2008-x}{1968}+\frac{2008-x}{1973}+\frac{2008-x}{1978}=0\)

\(\Leftrightarrow\left(2008-x\right)\left(\frac{1}{1963}+\frac{1}{1968}+\frac{1}{1973}+\frac{1}{1978}\right)=0\)

Vì \(\left(\frac{1}{1963}+\frac{1}{1968}+\frac{1}{1973}+\frac{1}{1978}\right)\ne0\)

Nên : 2008 - x = 0 

<=> x = 2008

Vậy x = 2008

11 tháng 5 2023

\(\dfrac{55-x}{1963}\) + \(\dfrac{50-x}{1968}\) + \(\dfrac{45-x}{1973}\) + \(\dfrac{40-x}{1978}\) + 4 = 0

(1 + \(\dfrac{55-x}{1963}\) ) + (  1 + \(\dfrac{50-x}{1968}\)) + (1+ \(\dfrac{45-x}{1973}\))+ (1 + \(\dfrac{40-x}{1978}\)) = 0

\(\dfrac{1963+55-x}{1963}\) + \(\dfrac{1968+50-x}{1968}\)+\(\dfrac{1973+45-x}{1973}\)+\(\dfrac{1978+40-x}{1978}\)=0

\(\dfrac{2018-x}{1963}\)+\(\dfrac{2018-x}{1968}\)+\(\dfrac{2018-x}{1973}\)+\(\dfrac{2018-x}{1973}\)+\(\dfrac{2018-x}{1978}\)=0

(2018 - \(x\))\(\times\)\(\dfrac{1}{1963}\)+\(\dfrac{1}{1986}\)+\(\dfrac{1}{1973}\)+) =0

                              2018 \(-x\) = 0

                              \(x\) = 2018

 

                           

7 tháng 7 2016

d)\(\frac{x+2}{327}+\frac{x+3}{326}+\frac{x+4}{325}+\frac{x+5}{324}=-4\)

\(\Rightarrow\frac{x+2}{327}+1+\frac{x+3}{326}+1+\frac{x+4}{325}+1+\frac{x+5}{324}+\frac{4\left(x+329\right)}{\left(x+329\right)}=0\)

\(\Rightarrow\frac{x+329}{327}+\frac{x+329}{326}+\frac{x+329}{325}+\frac{x+329}{324}+\frac{x+329}{\frac{1}{4}\cdot\left(x+329\right)}=0\)

\(\Rightarrow\left(x+329\right)\left(\frac{1}{327}+\frac{1}{326}+\frac{1}{325}+\frac{1}{324}+\frac{1}{\frac{1}{4}\left(x+329\right)}\right)=0\)

\(\Rightarrow x+329=0\).Do \(\frac{1}{327}+\frac{1}{326}+\frac{1}{325}+\frac{1}{324}+\frac{1}{\frac{1}{4}\left(x+329\right)}\ne0\)

=>x=-329

e)bn kiểm tra lại đề

7 tháng 7 2016

a) \(x\left(x-2016\right)+2015\left(2016-x\right)=0\)

\(x\left(x-2016\right)-2015\left(x-2016\right)=0\)

\(\left(x-2015\right)\left(x-2016\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x-2015=0\\x-2016=0\end{cases}\Rightarrow\orbr{\begin{cases}x=2015\\x=2016\end{cases}}}\)

Vậy x= 2015 và x= 2016

b) \(-5x\left(x-15\right)+\left(15-x\right)=0\)

\(-5x\left(x-15\right)-\left(x-15\right)=0\)

\(\left(-5x-1\right)\left(x-15\right)=0\)

\(\Rightarrow\orbr{\begin{cases}-5x-1=0\\x-15=0\end{cases}\Rightarrow\orbr{\begin{cases}-5x=1\\x=15\end{cases}\Rightarrow}\orbr{\begin{cases}x=-\frac{1}{5}\\x=15\end{cases}}}\)

Vậy x= -1/5 và x= 15

d) \(\frac{x+2}{327}+\frac{x+3}{326}+\frac{x+4}{325}+\frac{x+5}{324}=-4\)

10 tháng 11 2017

\(\dfrac{59-x}{41}+\dfrac{57-x}{43}+\dfrac{55-x}{45}+\dfrac{53-x}{47}+\dfrac{51-x}{49}=-5\)

\(\Rightarrow\dfrac{59-x}{41}+1+\dfrac{57-x}{43}+1+\dfrac{55-x}{45}+1+\dfrac{53-x}{47}+1+\dfrac{51-x}{49}+1=0\)\(\Rightarrow\dfrac{100-x}{41}+\dfrac{100-x}{43}+\dfrac{100-x}{45}+\dfrac{100-x}{47}+\dfrac{100-x}{49}=0\)

\(\Rightarrow\left(100-x\right)\left(\dfrac{1}{41}+\dfrac{1}{43}+\dfrac{1}{45}+\dfrac{1}{47}+\dfrac{1}{49}\right)=0\)

\(\Rightarrow100-x=0\Rightarrow x=100\)

12 tháng 11 2017

Thks you

26 tháng 7 2017

Mình k chép lại đề nha!

Ap dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{x-1}{2}=\dfrac{y-2}{3}=\dfrac{z-4}{4}=\dfrac{2x-2}{4}=\dfrac{3y-6}{9}=\dfrac{2x+3y-z-4}{2+3-4}=46\)

Suy ra; x-1/2 => x-1=92 => x=93

y-2/3 => y-2=138 => y=140

z-4/4=46 => z-4= 184 => z=188

Vậy x=93

y=140

z=188

26 tháng 7 2017

\(\dfrac{x-1}{2}=\dfrac{y-2}{3}=\dfrac{z-4}{4}\)

\(\Rightarrow\dfrac{2x-2}{4}=\dfrac{3y-6}{9}=\dfrac{z-4}{4}\)

Dựa vào tính chất dãy tỉ số bằng nhau ta có:
\(=\dfrac{2x-2+3y-6-z+4}{4+9-4}=\dfrac{\left(2x+3y-z\right)-2-6+4}{9}=\dfrac{54}{9}=6\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x-1}{2}=6\Rightarrow x-1=12\Rightarrow x=13\\\dfrac{y-2}{3}=6\Rightarrow y-2=18\Rightarrow y=20\\\dfrac{z-4}{4}=6\Rightarrow z-4=24\Rightarrow z=28\end{matrix}\right.\)

b) áp dụng giống.

\(2\) )

\(B=\left(1+\dfrac{y}{x}\right)\left(1+\dfrac{x}{z}\right)\left(1+\dfrac{z}{4}\right)\)

\(B=\dfrac{2y}{x}.\dfrac{x+z}{z}.\dfrac{4+z}{4}\)

\(B=\dfrac{2y\left(x+z\right)\left(4+z\right)}{4xz}\)

\(B=\dfrac{\left(2xy+2yz\right)\left(4+z\right)}{4xz}\)

\(B=\dfrac{8xy+2xyz+8yz+2yz^2}{4xz}\)