Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Call number to find is xy
10x + y = "a two digit number
if you reverse the digits of your number, the result is a number 20% larger than your number.
10y + x = 1.2(10x+y)
10y + x = 12x + 1.2y
10y - 1.2y = 12x - x
8.8y = 11x
8y = x
y = 1.25x
the only single digit integer that satisfies this
x = 4, y = 5
45 is the two digit number
The factors of 24 are: 1, 2, 3, 4, 6, 8, 12, 24
We know that we can't have a two digit factor in one of our three digit numbers(it can't fill in one digit), so we are left with:
1,2,3,4,6,8
Now, we can just bash out unique cases:
138
146
226
234
138 = 3! = 6 ways
146 = 3! = 6 ways
226 = 3!/2! = 3 ways
234 = 3! = 6 ways
add all these up, and we get:
6+6+3+6 = 21
\(\frac{P}{Q}=\frac{2}{3}=\frac{100}{150}=\frac{P+100}{Q+150}\Rightarrow P+100=\frac{2}{3}\left(Q+150\right)\)
\(\frac{P+100}{Q+200}=\frac{3}{4}\Rightarrow P+100=\frac{3}{4}\left(Q+200\right)\)
\(\frac{2}{3}\left(Q+150\right)=\frac{3}{4}\left(Q+200\right)\Leftrightarrow Q=-600\)
\(\Rightarrow P=-400\).
a)\(x^2=0\\ \Leftrightarrow x=0\)
vậy...
b)\(x^2=1\\ \Rightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)
vậy...
c)\(x^2=2\\ \Rightarrow x^2=\left(\pm\sqrt{2}\right)^2\\ \Rightarrow\left[{}\begin{matrix}x=\sqrt{2}\\x=-\sqrt{2}\end{matrix}\right.\)
vậy...
d)\(x^2=6\left(x>0\right)\\ \Rightarrow x^2=\left(\pm\sqrt{6}\right)^2\\ màx>0\\ \Rightarrow x=\sqrt{6}\)
vậy...
e)\(x^2=7\left(x< 0\right)\)
\(wtf\) ????? thông minh đấy \(x^2\ge0\) mà điều kiện lại là x < 0 ??? :D
rỗng r
f) \(\left(x+1\right)^2=1\\ \Rightarrow\left[{}\begin{matrix}x+1=1\\x+1=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\)
vậy....
g)\(\left(x-2\right)^2=2\\ \Rightarrow\left(x-2\right)^2=\left(\pm\sqrt{2}\right)^2\\ \Rightarrow\left[{}\begin{matrix}x-2=\sqrt{2}\\x-2=-\sqrt{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{2}+2\\x=-\sqrt{2}+2\end{matrix}\right.\)
tự tính :D
vậy..
h)\(\left(x+\sqrt{3}\right)^2=5\\ \Leftrightarrow\left(x+\sqrt{3}\right)^2=\left(\pm\sqrt{5}\right)^2\\ \Rightarrow\left[{}\begin{matrix}x+\sqrt{3}=\sqrt{5}\\x+\sqrt{3}=-\sqrt{5}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\\x=\end{matrix}\right.\)
tự tính lười lắm
a) \(2x^2-3x=0\)
\(\Leftrightarrow x\left(2x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\2x-3=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\2x=3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{3}{2}\end{matrix}\right.\)
b) \(x^3-2x=0\)
\(\Leftrightarrow x\left(x^2-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x^2-2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x^2=2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\sqrt{2}\end{matrix}\right.\)
c) \(x^6+1=0\)
\(\Leftrightarrow x^6=-1\)
Ta có : \(x^6\ge0\) với mọi x
Mà : -1 < 0
=> Vô nghiệm
d) \(x^3+2x=0\)
\(\Leftrightarrow x\left(x^2+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x^2+2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x^2=-2\left(loại\right)\end{matrix}\right.\)
e) \(x^5+8x^2=0\)
\(\Leftrightarrow x^2\left(x^3+8\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2=0\\x^3+8=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x^3=-8\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\)
f) \(x^2\left(x^2-9\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2=0\\x^2-9=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x^2=9\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\pm3\end{matrix}\right.\)
g) \(\left(x+\dfrac{1}{2}\right)\left(x^2-\dfrac{4}{5}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+\dfrac{1}{2}=0\\x^2-\dfrac{4}{5}=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-1}{2}\\x^2=\dfrac{4}{5}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-1}{2}\\x=\sqrt{\dfrac{4}{5}}\end{matrix}\right.\)
a: |x|=4
=>x=4(nhận) hoặc x=-4(loại)
b: |-x|=1
=>|x|=1
=>x=1(nhận) hoặc x=-1(loại)
c: |x|=7
=>x=7(loại) hoặc x=-7(nhận)
d: |-x|=|-2|
=>|x|=2
=>x=2 hoặc x=-2