Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn A
khoảng thời gian ngắn nhất để năng lượng điện trường lại bằng năng lượng từ trường ∆ t = T/4 = 2,5.10-5s.
Ta có: \(W=W_t+W_d\)
\(\Leftrightarrow W_t=W_{dmax}-W_d\)
\(=\frac{1}{2}C.U^2_0-\frac{1}{2}Cu^2\)
\(=5.10^{-5}J\)
Điện tích trên tụ giảm từ cực đại xuống nửa cực đại là \(\dfrac{T}{6}=2.10^-4s\Rightarrow T = 12.10^{-4} s\)
Năng lượng điện giảm từ cực đại xuống nửa cực đại ứng với điện tích giảm từ \(Q_0\) (cực đại) xuống \(\dfrac{Q_0}{\sqrt 2}\)
Biểu diễn bằng véc tơ quay ta thấy véc tơ quay đã quay \(45^0\), ứng với thời gian là: \(\dfrac{T}{8}=1,5.10^{-4}s\)
Chọn A
\(W= W_{Cmax}=W_C+W_L\)
=> \(W_L = W_{Cmax}-W_C= \frac{1}{2}C.(U_0^2-u^2)= 5.10^{-7}J.\)
\(T = 2\pi .\sqrt{LC} = 2.10^{-5}s.\)
Thời gian từ lúc hiệu điện thế trên tụ cực đại U0 đến lúc hiệu điện thế trên tụ \(+\frac{U_0}{2}\) tính dựa vào đường tròn
U 0 +U 0 2
\(\cos \varphi = \frac{U_)/2}{U_0}= \frac{1}{2}=> \varphi= \frac{\pi}{3}. \)
\( t = \frac{\varphi}{\omega}= \frac{\pi/3}{2\pi/T}= \frac{T}{6}= \frac{1}{3}.10^{-5}s.\)