Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án D.
Gọi I(a,b,c) là tâm mặt cầu cố định đó. Rõ ràng d(I,(P)) = R không đối với mọi m , n ∈ ℝ .
Với m = 1 ⇒ d I , P = 2 n b + 1 - n 2 c + 4 n 2 + 1 4 n 2 + 1 - n 2 2 = R
Với m = - 1 ⇒ d I , P = - 2 n b + 1 - n 2 c + 4 n 2 + 1 4 n 2 + 1 - n 2 2 = R
⇒ 2 n b + 1 - n 2 c + 4 n 2 + 1 = - 2 n b + 1 - n 2 c + 4 n 2 + 1 ⇔ [ b = 0 1 - n 2 c + 4 n 2 + 1 = 0
Rõ ràng 1 - n 2 c + 4 n 2 + 1 = 0 không thể xảy ra với mọi n ∈ ℝ suy ra b = 0
Với m = n = 1 ⇒ d I , P = b + 4 = R = 4 .
Đáp án D
S : x − 1 2 + y + 2 2 + z − 1 2 2 = 21 4 − m ⇒ I 1 ; − 2 ; 1 2 ; R 2 = 21 4 − m
Do đó:
d = d I ; P = 2 − 4 − 1 2 − 8 3 = 7 2 ⇒ R 2 = 2 2 + 7 2 2 ⇒ m = − 11
Ta có
hay A là hình chiếu vuông góc của I trên mặt phẳng (P)
Do đó ta dễ dàng tìm được
Chọn B.