Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án C
Phương pháp: G là trực tâm tam giác MNP
Cách giải: G(x0;y0;z0) là trực tâm tam giác MNP
Mặt phẳng (MNP) có một VTPT
Phương trình (MNP): 2x+3y-z-4=0
Từ (1),(2),(3), suy ra
xy+3x-7y=21
<=> x(y+3) -7y = 21
<=> x(y+3) = 21+7y
<=> x(y+3) = 7(y+3)
<=> (x-7)(y+3)=0
Suy ra nghiệm của ptr là
x=7, y tùy ý thuộc Z
x tùy ý thuộc Z, y=-3.
Đáp án D
Phương pháp giải: Xét đẳng thức vectơ, đưa về hình chiếu của điểm trên mặt phẳng
Lời giải:
Gọi M(a;b;c) thỏa mãn đẳng thức vectơ 2 M A → + M B → + M C → = 0 →
Khi đó S = 2 N A 2 + N B 2 + N C 2 = 2 N A 2 → + N B 2 → + N C 2 → = 2 M N → + M A → 2 + M N → + M B → 2 + M N → + M C → 2
= 4 M N 2 + 2 N M → 2 M A → + M B → + M C → + 2 M A 2 → + M B 2 → + M C 2 →
= 4 M N 2 + 2 M A 2 → + M B 2 → + M C 2 →
Suy ra Smin ó MNmin ó N là hình chiếu của M trên(P) => MN ⊥ (P)
Phương trình đường thẳng MN là
Mà m ∈ mp(P) suy ra t–(1–t)+t+2+2=0 ó t = –1 => N(–1;2;1)
Lời giải:
\(A=a_1a_2+a_2a_3+....+a_{n-1}a_n+a_na_1=0\)
Nếu $n$ lẻ, ta thấy tổng $A$ gồm lẻ số hạng, mỗi số hạng có giá trị $1$ hoặc $-1$ nên $A$ lẻ \(\Rightarrow A\neq 0\) (vô lý)
Do đó $n$ chẵn. Nếu $n$ có dạng $4k+2$. Vì $A=0$ nên trong $4k+2$ số hạng trên sẽ có $2k+1$ số có giá trị là $1$ và $2k+1$ số có giá trị $-1$. Vì mỗi số $a_i$ trong $A$ xuất hiện $2$ lần nên \(a_1a_2a_2a_3....a_{n-1}a_na_{n}a_{1}=(a_1a_2...a_n)^2=1^{2k+1}(-1)^{2k+1}=-1\) (vô lý)
Do đó $n$ phải có dạng $4k$, tức là $n$ chia hết cho $4$ (đpcm)
M(1;1;1);N(1;0;-2),P(0;1;-1) ⇒ N P ⇀ = - 1 ; 1 ; 1 ; M P ⇀ = - 1 ; 0 ; - 2
⇒ N P ⇀ ; M P ⇀ = - 2 ; - 3 ; 1
Phương trình mặt phẳng (MNP) là
G là trực tâm tam giác MNP
⇔
⇔
⇔
Chọn đáp án B.