K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 5 2018

Cách 1. Suy luận.

Điểm M nằm ở góc phần tư thứ IV nên điểm M 1  nằm ở góc phần tư thứ hai. Số đo  A M 1  dương nên hai phương án A, D bị loại. Mặt khác sđ  A M 1  <   180 o  nên phương án B bị loại.

Vậy đáp án là C.

Cách 2. Tính trực tiếp.

Gọi B là giao điểm của đường phân giác góc xOy với đường tròn. Ta có

Sđ A B   =   45 o ,   s đ   M A   =   70 o

Suy ra sđ MB = 115 o .

Mà sđ B M 1  = sđ MB nên sđ A M 1   =   45 o   +   115 o   =   160 o .

Đáp án: C

8 tháng 2 2018

Giải sách bài tập Toán 10 | Giải sbt Toán 10

Sđ MK = sđ KM’ = 55 o

⇒ sđ AM’ = sđ AM + sđ MK + sđ KM’ = 190 o .

Đáp án: C

5 tháng 4 2017

Giải sách bài tập Toán 10 | Giải sbt Toán 10

-π = -3,14; -2π = -6,28; (-5π)/2 = -7,85.

Vậy (-5π)/2 < -6,32 < -2π.

Do đó điểm M nằm ở góc phần tư thứ II.

Đáp án: B

20 tháng 1 2019

Giải sách bài tập Toán 10 | Giải sbt Toán 10

(h.66) Ta có

A M 2  = MA’ = MA + AA’

Suy ra

Sđ A M 2  = -α + π + k2π, k ∈ Z.

Vậy đáp án là B.

6.13. (h.67) Ta có

Sđ A M 3  = -sđ AM = -α + k2π, k ∈ Z.

Đáp án: D

15 tháng 4 2017

AM1 = – α + k2π,

AM2 = π – α + k2π,

AM3 = α + (k2 + 1)π

5 tháng 7 2018

Giải bài 7 trang 140 SGK Đại Số 10 | Giải toán lớp 10

21 tháng 2 2018

Chọn A.

Theo giả thiết ta có: 

suy ra điểm M là điểm chính giữa của cung phần tư thứ I.

Bài 1: Cho đường tròn (I; R) nội tiếp tam giác ABC tiếp xúc với BC tại D. Gọi M và N lần lượt là trung điểm của AD và BC. Chứng minh M, I, N thẳng hàng Bài 2: cho đường tròn tâm O và 3 dây cung song song với nhau là AA', BB', CC'. Chứng minh rằng trực tâm các tam giác ABC'; BCA' và CAB' cùng nằm trên 1 đường thẳng Bài 3: Trên đường thẳng a cho các điểm A, B, C và trên đường thẳng b cho M, N, P thỏa mãn...
Đọc tiếp

Bài 1: Cho đường tròn (I; R) nội tiếp tam giác ABC tiếp xúc với BC tại D. Gọi M và N lần lượt là trung điểm của AD và BC. Chứng minh M, I, N thẳng hàng

Bài 2: cho đường tròn tâm O và 3 dây cung song song với nhau là AA', BB', CC'. Chứng minh rằng trực tâm các tam giác ABC'; BCA' và CAB' cùng nằm trên 1 đường thẳng

Bài 3: Trên đường thẳng a cho các điểm A, B, C và trên đường thẳng b cho M, N, P thỏa mãn vectoAB=k. vectoAC và vectoMN=k. vectoMP (k khác 1). Giả sử X, Y, Z là các điểm chia các đoạn thẳng AM, BN và CP theo cùng 1 tỉ số. CMR: X, Y, Z thẳng hàng

Bài 4: Cho góc xOy và 2 điểm M, N di chuyển trên 2 cạnh Ox, Oy thỏa mãn OM=2ON.
a)) CMR: trung điểm I của MN luôn thuộc 1 đường thẳng cố định
b)) Nghiên cứu trường hợp giả thiết thay OM=2ON thành OM=mON với m là 1 hằng số cố định
c)) Nghiên cứu trường hợp thay giả thiết I là trung điểm MN thành giả thiết I là điểm chia MN theo tỉ số k cố định. (toán lớp 10 ạ)

0