Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{2}x^2y.\left(\frac{-1}{2}x^3y\right)^3.\left(-2x^2\right)^2\)
\(=\frac{1}{2}.\left(-\frac{1}{8}\right).4.x^2y.x^9.y^3.x^4\)
\(=-\frac{1}{4}x^{15}y^4\)
Với \(x=2,y=-1\) ta có :
\(-\frac{1}{4}.2^{15}.\left(-1\right)^4=-2^{13}\)
I . Trắc Nghiệm
1B . 2D . 3C . 5A
II . Tự luận
2,a,Ta có: A+(x\(^2\)y-2xy\(^2\)+5xy+1)=-2x\(^2\)y+xy\(^2\)-xy-1
\(\Leftrightarrow\) A=(-2x\(^2\)y+xy\(^2\)-xy-1) - (x\(^2\)y-2xy\(^2\)+5xy+1)
=-2x\(^2\)y+xy\(^2\)-xy-1 - x\(^2\)y+2xy\(^2\)-5xy-1
=(-2x\(^2\)y - x\(^2\)y) + (xy\(^2\)+ 2xy\(^2\)) + (-xy - 5xy ) + (-1 - 1)
= -3x\(^2\)y + 3xy\(^2\) - 6xy - 2
b, thay x=1,y=2 vào đa thức A
Ta có A= -3x\(^2\)y + 3xy\(^2\) - 6xy - 2
= -3 . 1\(^2\) . 2 + 3 .1 . 2\(^2\) - 6 . 1 . 2 -2
= -6 + 12 - 12 - 2
= -8
3,Sắp xếp
f(x) =9-x\(^5\)+4x-2x\(^3\)+x\(^2\)-7x\(^4\)
=9-x\(^5\)-7x\(^4\)-2x\(^3\)+x\(^2\)+4x
g(x) = x\(^5\)-9+2x\(^2\)+7x\(^4\)+2x\(^3\)-3x
=-9+x\(^5\)+7x\(^4\)+2x\(^3\)+2x\(^2\)-3x
b,f(x) + g(x)=(9-x\(^5\)-7x\(^4\)-2x\(^3\)+x\(^2\)+4x) + (-9+x\(^5\)+7x\(^4\)+2x\(^3\)+2x\(^2\)-3x)
=9-x\(^5\)-7x\(^4\)-2x\(^3\)+x\(^2\)+4x-9+x\(^5\)+7x\(^4\)+2x\(^3\)+2x\(^2\)-3x
=(9-9)+(-x\(^5\)+x\(^5\))+(-7x\(^4\)+7x\(^4\))+(-2x\(^3\)+2x\(^3\))+(x\(^2\)+2x\(^2\))+(4x-3x)
= 3x\(^2\) + x
g(x)-f(x)=(-9+x\(^5\)+7x\(^4\)+2x\(^3\)+2x\(^2\)-3x) - (9-x\(^5\)-7x\(^4\)-2x\(^3\)+x\(^2\)+4x)
=-9+x\(^5\)+7x\(^4\)+2x\(^3\)+2x\(^2\)-3x-9+x\(^5\)+7x\(^4\)+2x \(^3\)-x\(^2\)-4x
=(-9-9)+(x\(^5\)+x\(^5\))+(7x\(^4\)+7x\(^4\))+(2x\(^3\)+2x\(^3\))+(2x\(^2\)-x\(^2\))+(3x-4x)
= -18 + 2x\(^5\) + 14x\(^4\) + 4x\(^3\) + x\(^2\) - x
a: \(\Rightarrow\left(2x-4\right)^{x+1}\left[\left(2x-4\right)^4-1\right]=0\)
=>(2x-4)(2x-3)(2x-5)=0
hay \(x\in\left\{2;\dfrac{3}{2};\dfrac{5}{2}\right\}\)
b: \(\Leftrightarrow\left(x-3\right)^{x+4}\left(x-3-1\right)=0\)
=>(x-3)x+4(x-4)=0
=>x=3 hoặc x=4
c: \(\Leftrightarrow\left[{}\begin{matrix}x-1>2\\x-1< -2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x>3\\x< -1\end{matrix}\right.\)
d: =>-5<=2x+3<=5
=>-8<=2x<=2
=>-4<=x<=1
a)Viết dưới dạng phân số rồi sử dụng tích chéo ý
b)\(\frac{-1}{7}.2^3-2x:1\frac{4}{3}=-2^{x-1}\)
\(\Rightarrow\frac{-8}{7}-2x:\frac{7}{3}=-2^{x-1}\)
\(\Rightarrow\frac{-8}{7}-\frac{6x}{7}=-2^{x-1}\)
\(\Rightarrow\frac{-8-6x}{7}=\frac{2^{x-1}}{-1}\)
\(\Rightarrow-1\left(-8-6x\right)=7.2^{x-1}\)
\(\Rightarrow6x+8=7.2^{x-1}\)
.........
1, \(\left(xy\right)^2-\frac{1}{2}x^2y^2+3xy^2.\left(-\frac{1}{3}x\right)\)
\(=x^2y^2-\frac{1}{2}x^2y^2-x^2y^2\)
\(=-\frac{1}{2}x^2y^2\)
2, \(4.\left(-\frac{1}{2}x\right)^2-\frac{3}{2}x.\left(-x\right)+\frac{1}{3}x^2\)
\(=x^2+\frac{3}{2}x^2+\frac{1}{3}x^2\)
\(=\frac{17}{6}x^2\)
3, \(-4.\left(2x\right)^2y^3+\frac{1}{2}xy.\left(-2xy^2\right)+\frac{1}{4}x^2y^3\)
\(=-16x^2y^3-x^2y^3+\frac{1}{4}x^2y^3\)
\(=-\frac{67}{4}x^2y^3\)
4, \(\frac{1}{3}x^4y-\frac{5}{3}x^3.\left(\frac{5}{2}xy\right)+\frac{3}{4}x^4y\)
\(=\frac{1}{3}x^4y-\frac{25}{6}x^4y+\frac{3}{5}x^4y\)
\(=-\frac{97}{30}x^4y\)
5, \(\left(-2x^3y^4\right)^2-5x^2y.\left(\frac{3}{4}x^4y^7\right)-\frac{2}{3}x^6y^8\)
\(=4x^6y^8-\frac{15}{4}x^6y^8-\frac{2}{3}x^6y^8\)
\(=-\frac{5}{12}x^6y^8\)
a) 45x : 5x = 81
=> ( 45 : 5 )x = 81
=> 9x = 92
=> x = 2
a) 45x : 5x = 81 <=> (45 : 5)x = 81 <=> 9x = 92 => x = 2
b) 7(x + 1)(2x - 3) = 1
<=> 7(x + 1)(2x - 3) = 70
=> (x + 1)(2x - 3) = 0
<=> \(\orbr{\begin{cases}x+1=0\\2x-3=0\end{cases}}\)<=> \(\orbr{\begin{cases}x=-1\\x=\frac{3}{2}\end{cases}}\)
c) 4x+1 - 22x = 192
<=> 4x.4 - 4x = 192
<=> 4x . 3 = 192
<=> 4x = 64
<=> 4x = 43 => x = 3
d) x3 - 4x = 0
<=> x(x2 - 4)) = 0
<=> \(\orbr{\begin{cases}x=0\\x^2-4=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x=0\\x=\pm2\end{cases}}\)