Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 4x(x + 1) + (3 – 2x)(3 + 2x) = 15
⇔4x2 + 4x + (9 – 4x2) = 15
⇔ 4x2 + 4x + 9 – 4x2 = 15
⇔4x = 15 – 9
⇔x=1,5
b)3x(x – 20012) – x + 20012 = 0
⇔3x(x – 20012) – (x – 20012) = 0
⇔(x – 20012)(3x – 1) = 0
⇔x – 20012 = 0 hay 3x – 1 = 0
⇔x = 20012 hoặc x = \(\dfrac{1}{2}\)
a) \(\left(x+2\right)^2-9=0\)
\(\Rightarrow\left(x+2\right)^2=9\)
\(\Rightarrow\left(x+2\right)^2=3^2\)
\(\Rightarrow x+2=3\)
\(\Rightarrow x=3-2=1\)
a) ( x + 2 )2 = 9
=> ( x + 2 ) 2 = 9
=> ( x + 2 )2 = 32
=> x + 2 = + 3
=> \(\orbr{\begin{cases}x+2=-3\\x+2=3\end{cases}}\)
=> \(\orbr{\begin{cases}x=-1\\x=5\end{cases}}\)
Vậy x = -1; 5
b) ( x + 2 )2 - x2 + 4 = 0
=> ( x + 2 )2 - ( x2 - 4 ) = 0
=> ( x + 2 )2 - ( x + 2 ) ( x - 2 ) = 0
=> ( x + 2 ) ( x + 2 - x + 2 ) = 0
=> ( x + 2 ) . 4 = 0
=> x + 2 = 0
=> x = - 2
Vậy x = - 2
c) 5 ( 2x - 3 )2 - 5 ( x + 1 )2 - 15( x + 4 ) ( x - 4 ) = - 10
=> 5 ( 4x2 - 12x + 9 ) - 5 ( x2 + 2x + 1 ) - 15 ( x2 - 42 ) = - 10
=> 20x2 - 60x + 45 - 5x2 - 10x - 5 - 15x2 + 240 = -10
=> - 70x + 280 = - 10
=> - 70x = - 290
=> x = \(\frac{29}{7}\)
Vậy x = \(\frac{29}{7}\)
d) x ( x + 5 ) ( x - 5 ) - ( x + 2 ) ( x2 - 2x + 4 ) = 3
=> x ( x2 - 25 ) - ( x3 - 8 ) = 3
=> x3 - 25x - x3 + 8 = 3
=> - 25x + 8 = 3
=> - 25x = -5
=> x = \(\frac{1}{5}\)
Vậy x = \(\frac{1}{5}\)
a) Ta có: (x + 1)(x + 3)(x + 5)(x + 7) + 15 = 0
<=> (x2 + 8x + 7)(x2 + 8x + 15) + 15 = 0
<=> (x2 + 8x + 7)2 + 8(x2 + 8x + 7) + 15 = 0
<=> (x2 + 8x +7 )2 + 3(x2 + 8x + 7) + 5(x2 + 8x + 7) + 15 = 0
<=> (x2 + 8x + 7 + 3)(x2 + 8x + 7 +5) = 0
<=> (x2 + 8x + 10)(x2 + 8x + 12) = 0
<=> \(\orbr{\begin{cases}x^2+8x+10=0\\x^2+8x+12=0\end{cases}}\)
<=> \(\orbr{\begin{cases}\left(x+4\right)^2-6=0\\x^2+6x+2x+12=0\end{cases}}\)
<=> \(\orbr{\begin{cases}\left(x+4\right)^2=6\left(1\right)\\\left(x+6\right)\left(x+2\right)=0\left(2\right)\end{cases}}\)
Giải (1) <=> \(\orbr{\begin{cases}x+4=\sqrt{6}\\x+4=-\sqrt{6}\end{cases}}\) <=> \(\orbr{\begin{cases}x=\sqrt{6}-4\\x=-\sqrt{6}-4\end{cases}}\)
Giải (2) <=> \(\orbr{\begin{cases}x=-6\\x=-2\end{cases}}\)
b) Ta có: (x2 + x)(x2 + x + 1) = 6
<=> (x2 + x)2 + (x2 + x) - 6 = 0
<=> (x2 + x)2 + 3(x2 + x) - 2(x2 + x) - 6 = 0
<=> (x2 + x + 3)(x2 + x - 2) = 0
<=> x2 + 2x - x - 2 = 0 (vì x2 + x + 3 = (x + 1/2)^2 + 11/4 > 0)
<=> (x + 2)(x - 1) = 0
<=> \(\orbr{\begin{cases}x=-2\\x=1\end{cases}}\)
Bài giải:
a) x3 – 1414x = 0 => x(x2 –(12)2(12)2) = 0
=>x(x - 1212)(x + 1212) = 0
Hoặc x = 0
Hoặc x - 1212 = 0 => x = 1212
Hoặc x + 1212 = 0 => x = -1212
Vậy x = 0; x = -1212; x = 1212.
b) (2x – 1)2 – (x + 3)2 = 0
[(2x - 1) - (x + 3)][(2x - 1) + (x + 3)] = 0
(2x - 1 - x - 3)(2x - 1 + x + 3) = 0
(x - 4)(3x + 2) = 0
Hoặc x - 4 = 0 => x = 4
Hoặc 3x + 2 = 0 => 3x = 2 => x = -2323
Vậy x = 4; x = -2323.
c) x2(x – 3) + 12 – 4x = 0
x2(x – 3) - 4(x -3)= 0
(x - 3)(x2- 22) = 0
(x - 3)(x - 2)(x + 2) = 0
Hoặc x - 3 = 0 => x = 3
Hoặc x - 2 =0 => x = 2
Hoặc x + 2 = 0 => x = -2
Vậy x = 3; x = 2; x = -2.
a ) \(x^3-\dfrac{1}{4}x=0\)
\(\Leftrightarrow\) \(x\left(x^2-\dfrac{1}{4}\right)=0\)
\(\Leftrightarrow x\left(x-\dfrac{1}{2}\right)\left(x+\dfrac{1}{2}\right)=0\)
Hoặc x = 0
Hoặc \(x-\dfrac{1}{2}=0\Rightarrow x=\dfrac{1}{2}\)
Hoặc \(x+\dfrac{1}{2}=0\Rightarrow x=-\dfrac{1}{2}\)
b) \((2x - 1 )^2 - (x + 3)^2 = 0\)
\(\Leftrightarrow\left(2x-1-x-3\right)\left(2x-1+x-3\right)=0\)
\(\Leftrightarrow\left(x-4\right)\left(3x+2\right)=0\)
Hoặc \(x-4=0\Rightarrow x=4\)
Hoặc \(3x+2=0\Rightarrow3x=-2\Rightarrow x=-\dfrac{2}{3}\)
c) \(x^2 (x-3) + 12 - 4x = 0\)
\(\Leftrightarrow x^2\left(x-3\right)-\left(4x-12\right)=0\)
\(\Leftrightarrow x^2\left(x-3\right)-4\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x^2-2^2\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x-2\right)\left(x+2\right)=0\)
Hoặc \((x - 3) = 0\) \(\Rightarrow\) x = 3
Hoặc \(x - 2 = 0\) \(\Rightarrow\) x = 2
Hoặc \(x + 2 = 0 \) \(\Rightarrow\) x = \(- 2\)
Bài 1:
Đặt biểu thức trên là A
Ta có:\(A=\left(x-2\right)\left(x+1\right)-\left(x+2\right)\left(x-3\right)=x^2-x-2-\left(x^2-x-6\right)\)
\(=x^2-x-2-x^2+x+6=4\)
Vậy biểu thức A không phụ thuộc vào biến x (đpcm)
Bài 2:
a)\(\left(x-5\right)\left(x+2\right)+\left(x+1\right)\left(2-x\right)=15\)
\(\Leftrightarrow x^2-3x-10+x-x^2+2=15\)
\(\Leftrightarrow-2x-8=15\)
\(\Leftrightarrow-2x=23\)\(\Leftrightarrow x=\frac{-23}{2}\)
Vậy...................................................................................
câu b) tương tự câu a) thôi,bạn tự làm đi nhé
\(\left(x+2\right)\left(x^2-2x+4\right)-x\left(x^2+2\right)=15\)
\(\Rightarrow\left(x^3+2^3\right)-x^3-2x=15\)
\(\Rightarrow x^3+8-x^3-2x=15\)
\(\Rightarrow8-2x=15\)
=>2x=8-15=-7
=>x=\(\frac{-7}{2}\)
\(\left(x^2-1\right)^3-\left(x^4+x^2+1\right)\left(x^2-1\right)=0\)
\(\Rightarrow\left(x^2-1\right)\left[\left(x^2-1\right)^2-\left(x^4+x^2+1\right)\right]=0\)
\(\Rightarrow\left(x^2-1\right)\left[\left(x^4-2x^2+1\right)-\left(x^4+x^2+1\right)\right]=0\)
\(\Rightarrow\left(x^2-1\right)\left(x^4-2x^2+1-x^4-x^2-1\right)=0\)
\(\Rightarrow\left(x^2-1\right)\left(-3x^2\right)=0\)
=>x2-1=0 hoặc -3x2=0
+)Nếu x2-1=0
=>x2=1
=>x=-1 hoặc x=1
+)Nếu -3x2=0
=>3x2=0
=>x2=0
=>x=0
Vậy x=-1 hoặc x=1 hoặc x=0
a) x3 + 3x2 + 3x + 1 = 64
=> (x + 1)3 = 64
=> (x + 1)3 = 43
=> x + 1 = 4 => x = 3
b) x3 + 6x2 + 9x = 4x
=> x3 + 6x2 + 9x - 4x = 0
=> x3 + 6x2 + 5x = 0
=> x3 + 5x2 + x2 + 5x = 0
=> x2(x + 5) + x(x + 5) = 0
=> (x + 5)(x2 + x) = 0
=> (x + 5)x(x + 1) = 0
=> \(\hept{\begin{cases}x=-5\\x=0\\x=-1\end{cases}}\)
c) 4(x - 2)2 = (x + 2)2
=> 4(x2 - 4x + 4) = x2 + 4x + 4
=> 4x2 - 16x + 16 = x2 + 4x + 4
=> 4x2 - 16x + 16 - x2 - 4x - 4 = 0
=> 3x2 - 20x + 12 = 0
=> 3x2 - 18x - 2x + 12 = 0
=> 3x(x - 6) - 2(x - 6) = 0
=> (x - 6)(3x - 2) = 0
=> \(\orbr{\begin{cases}x=6\\x=\frac{2}{3}\end{cases}}\)
d) x4 - 16x2 = 0
=> x2(x2 - 16) = 0
=> \(\orbr{\begin{cases}x^2=0\\x^2=16\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=\pm4\end{cases}}\)
e) x4 - 4x3 + x2 - 4x = 0
=> x4 + x2 - 4x3 - 4x = 0
=> x2(x2 + 1) - 4x(x2 + 1) = 0
=> (x2 - 4x)(x2 + 1) = 0
=> x(x - 4)(x2 + 1) = 0
=> \(\orbr{\begin{cases}x=0\\x=4\end{cases}}\)(vì x2 + 1 \(\ge\)1 > 0 \(\forall\)x)
f) x3 + x = 0 => x(x2 + 1) = 0 => x = 0 (vì x2 + 1 \(\ge1>0\forall\)x)
a) 4x(x + 1) + (3 – 2x)(3 + 2x) = 15
⇔4x2 + 4x + (9 – 4x2) = 15
⇔ 4x2 + 4x + 9 – 4x2 = 15
⇔4x = 15 – 9
⇔4x = 6
⇔x = 3/2
b)3x(x – 20012) – x + 20012 = 0
⇔3x(x – 20012) – (x – 20012) = 0
⇔(x – 20012)(3x – 1) = 0
⇔x – 20012 = 0 hay 3x – 1 = 0
⇔x = 20012 hoặc x = 1/2