K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 10 2018

Câu 1 :

\(y=-\left(m^2+1\right)x+m-4\)

Để hàm số nghịch biến trên R

⇔ a < 0

\(-\left(m^2+1\right)\)< 0

\(m^2+1\) > 0

\(m^2\) > -1 ∀x ∈ R

⇔ m ∈ R

Vậy với mọi giá trị của m thì hàm số nghịch biến trên R

Câu 2 :

Gọi (d) : y =ax+b

Vì (d) cắt trục hoành tại điểm x = 3

nên (d) sẽ cắt điểm A(3;0)

A(3;0) ∈ (d) ⇔ 0 = 3a +b

Mà M(-2;4) ∈ (d) ⇔ 4 = -2a +b

Ta có : \(\left\{{}\begin{matrix}3a+b=0\\-2a+b=4\end{matrix}\right.\)

\(\left\{{}\begin{matrix}a=\dfrac{-4}{5}\\b=\dfrac{12}{5}\end{matrix}\right.\)

Vậy a=\(\dfrac{-4}{5}\) và b= \(\dfrac{12}{5}\)

Câu 3 :

(d) : \(y=2x+m+1\)

a) Vì (d) cắt trục hoành tại điểm có hoành độ bằng 3

nên (d) sẽ cắt điểm A(3;0)

A(3;0) ∈ (d) ⇔ 0 = 2 .3 + m+1⇔ m= -7

Vậy m = -7

b) Vì (d) cắt trục tung tại điểm có tung độ bằng -2

nên (d) sẽ cắt điểm B( 0;-2)

B( 0;-2) ∈ (d) ⇔ -2 = 0.2+m+1 ⇔ m = -3

Vậy m = -3

NV
7 tháng 3 2020

Đồ thị hàm số nhận Oy làm trục đối xứng khi nó là hàm chẵn

Dễ dàng nhận ra miền xác định của hàm số là 1 miền đối xứng

Khi x thuộc TXĐ, ta có:

\(f\left(-x\right)=\frac{m\sqrt{2018-x}+\left(m^2-2\right)\sqrt{2018+x}}{-\left(m^2-1\right)x}\) (tất nhiên \(m\ne\pm1\))

\(f\left(-x\right)=f\left(x\right)\) \(\forall x\in D\)

\(\Leftrightarrow\frac{m\sqrt{2018+x}+\left(m^2-2\right)\sqrt{2018-x}}{\left(m^2-1\right)x}=\frac{m\sqrt{2018-x}+\left(m^2-2\right)\sqrt{2018+x}}{-\left(m^2-1\right)x}\) \(\forall x\in D\)

\(\Leftrightarrow\left(m^2+m-2\right)\sqrt{2018+x}+\left(m^2+m-2\right)\sqrt{2018-x}=0\)

\(\Leftrightarrow m^2+m-2=0\Rightarrow\left[{}\begin{matrix}m=1\left(l\right)\\m=-2\end{matrix}\right.\)

Vậy \(m=-2\)

Xác định phương trình hàm số bậc hai Cho ( P) y = ax2 + bx +c . Xác định a , b , c biết a, Có đỉnh I ( 3 , 6 ) và đi qua M ( 1 , -10 ) b , đò thị hàm số nhận đồ thị x =\(-\frac{4}{3}\) làm trục đối xứng và đi qua A (0 , -2 ) B ( -1 , -7 ) c , Đi qua A ( -2 , 7 ) B ( -1 , -2 ) C ( 3 , 2 ) d , Có đỉnh I ( -3 , 0 )và đi qua M ( 0 , -4 ) e , Có đỉnh I ( -1 , 1 ) và đi qua N ( \(\frac{1}{2}\) , 0 ) f , Đi qua A ( 1, 1 )...
Đọc tiếp

Xác định phương trình hàm số bậc hai

Cho ( P) y = ax2 + bx +c . Xác định a , b , c biết

a, Có đỉnh I ( 3 , 6 ) và đi qua M ( 1 , -10 )

b , đò thị hàm số nhận đồ thị x =\(-\frac{4}{3}\) làm trục đối xứng và đi qua A (0 , -2 ) B ( -1 , -7 )

c , Đi qua A ( -2 , 7 ) B ( -1 , -2 ) C ( 3 , 2 )

d , Có đỉnh I ( -3 , 0 )và đi qua M ( 0 , -4 )

e , Có đỉnh I ( -1 , 1 ) và đi qua N ( \(\frac{1}{2}\) , 0 )

f , Đi qua A ( 1, 1 ) B ( -1 ,9 ) c ( 0 , 3 )

g , Có đỉnh I ( 1 , 5 ) và đi qua A ( -1 , 1 )

h , có giá trị của trục bằng -1 và đi qua A ( 2 , -1) B ( 0 , 3 )

i , Đi qua A ( -1 , 8 0 , B ( 2 , -1 ) , C ( 1 , 0 )

j , Có đỉnh I ( 2 , 1 ) và cắt oy tại điểm có tung độ bằng 7

k ,Có giá trị lớn nhất bằng 2 và đi qua A ( 1 , 1 ) N ( -1 , 1 0

e, có giá trị nhỏ nhất bằng \(\frac{3}{4}\) khi x = \(\frac{1}{2}\)và nhận giá trị bằng 1 khi x = 1

m , Có đỉnh I ( 3 , 4 ) và đi qua M ( -1 ,0)

n , Có trục đối xứng x =1 và đi qua M ( 0 , 2 ) N ( 3 , 4 )

o , Có đỉnh \(\in\) ox , trục đói xứng x =2 đi qua N ( 0 , 2 )

p , Đi qua M ( 2 , -3 ) có đỉnh I ( 1 , -4 )

0
8 tháng 8 2019

Câu 1:

a) Hàm số \(y=-x^2+2x+3\)

Cho x=0=>y=3 là giao điểm của đường thẳng với trục hoành.

b)

Tọa độ đỉnh I của hàm số \(\left(1;4\right)\)

Trục đối xứng là x=1

Do a=-1<0 nên hàm số đồng biến trên \(\left(-\infty;1\right)\) và nghịch biến trên khoảng \(\left(1;\infty\right)\).

( dựa vô đây bạn tự vẽ bảng biến thiên và vẽ đồ thị nha)

4 tháng 10 2020
https://i.imgur.com/nfyEFWw.png
4 tháng 10 2020

a, Do \(\left(P\right)\) đi qua \(A\left(1;-3\right)\) nên \(a+b+1=-3\Leftrightarrow a+b=-4\left(1\right)\)

\(\left(P\right)\) có trục đối xứng là \(x=\frac{5}{2}\)

\(\Rightarrow\) Đỉnh của \(\left(P\right)\) có hoành độ là \(x=\frac{5}{2}\Leftrightarrow-\frac{b}{2a}=\frac{5}{2}\Leftrightarrow5a+b=0\left(2\right)\)

Giải hệ hai phương trình \(\left(1\right);\left(2\right)\) ta được \(\left\{{}\begin{matrix}a=1\\b=-5\end{matrix}\right.\)

\(\Rightarrow y=x^2-5x+1\left(P\right)\)

11 tháng 8 2015

a) Với \(x\in\left[0;1\right]\) => x  - 2 < 0 => |x - 2| = - (x -2)

Khi đó, \(f\left(x\right)=2\left(m-1\right)x+\frac{m\left(x-2\right)}{-\left(x-2\right)}=2\left(m-1\right)x-m\)

Để f(x) < 0 với mọi \(x\in\left[0;1\right]\) <=> \(2\left(m-1\right)x-m<0\)  (*)  với mọi \(x\in\left[0;1\right]\)

+) Xét m - 1 > 0 <=> m > 1 

(*) <=> \(x<\frac{m}{2\left(m-1\right)}\). Để (*) đúng với mọi \(x\in\left[0;1\right]\) <=> \(\frac{m}{2\left(m-1\right)}\ge1\) <=> 2(m -1) \(\le\)m <=> m \(\le\) 2 <=> m \(\le\) 2

Kết hợp điều kiện m > 1 =>1 <  m \(\le\) 2

+) Xét m = 1 thì (*) <=> -1 < 0 luôn đúng => m =1 thỏa mãn

+) Xét m - 1 < 0 <=> m < 1

(*) <=> \(x>\frac{m}{2\left(m-1\right)}\). Để (*) đúng với mọi \(x\in\left[0;1\right]\) <=> \(\frac{m}{2\left(m-1\right)}\le0\) <=> m \(\ge\) 0 (do m< 1 ). Kết hợp m < 1 => 0 \(\le\) m < 1

Kết hợp các trường hợp : Với  0 \(\le\)\(\le\) 2 thì .....

b)  Hoành độ giao điểm của đò thị hàm số với Ox là nghiệm của Phương trình : \(2\left(m-1\right)x+\frac{m\left(x-2\right)}{\left|x-2\right|}=0\) (1)

Đồ thị hàm số cắt Ox tại điểm có hoành độ xo thuộc (1;2) => x< 2 => |x- 2| = - (x- 2)

xo là nghiệm của (1) <=> \(2\left(m-1\right)x_o+\frac{m\left(x_o-2\right)}{\left|x_o-2\right|}=0\) <=> \(2\left(m-1\right)x_o-m=0\) 

+) Xét m \(\ne\) 1 thì (2)<=> \(x_o=\frac{m}{2\left(m-1\right)}\). Vì 1 < x< 2 nên \(1<\frac{m}{2\left(m-1\right)}<2\) <=> \(\begin{cases}\frac{m}{2\left(m-1\right)}-1>0\\\frac{m}{2\left(m-1\right)}-2<0\end{cases}\) <=> \(\begin{cases}\frac{-m+2}{2\left(m-1\right)}>0\left(a\right)\\\frac{-3m+4}{2\left(m-1\right)}<0\left(b\right)\end{cases}\) 

Giải (a) <=> 1 < m < 2

Giải (b) <=> m < 1 hoặc m > 4/3

Kết hợp nghiệm của (a) và (b) => 4/3 < m < 2

+) Xét m = 1 thì (2) <=> -1 = 0 Vô lí

Vậy Với 4/3 < m < 2 thì đồ thị hàm số cắt Ox tại điểm thuộc (1;2)