Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left(2000-1\right)\left(2000-2\right)\left(2000-3\right).....\) (Có 2000 thừa số)
\(A=\left(2000-1\right)\left(2000-2\right)\left(2000-3\right)....\left(2000-2000\right)\)
\(A=1999\cdot1998\cdot1997\cdot.....\cdot0\)
\(A=0\)
\(A=\left(2000-1\right)\left(2000-2\right)\left(2000-3\right)....\left(2000-2000\right)\left(\text{Vì có 2000 thưà số }\right)\)
\(=\left(2000-1\right)\left(2000-2\right)\left(2000-3\right)....0\)
\(=0\)
Vậy....
A = ( 2000 - 1 ) x ( 2000 - 2 ) x .... x ( 2000 - 2000)
= 1999 x 1998 x 1997 x 1996 x ... x 0
= 0
Vậy A = 0
Nhớ k mình nha ! Giải chi tiết rồi đó ! Mình còn là người trả lời trước tiên nhe!
a) Trong tích A có một thừa số là: 2000 – 2000 = 0. Do đó: A = B.
Giả sử trong 2000 số nguyên dương đã cho không có 2 số nào bằng nhau
\(a_1>a_2>a_3>...>a_{2000}\ge1\)
Khi đó ta có :
\(\frac{1}{a_1}+\frac{1}{a_2}+\frac{1}{a_3}+...+\frac{1}{a_{2000}}\le1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2000}=8,1783...< 12\)
( Mâu thuẫn giả thiết )
Vậy trong 2000 số nguyên dương đã cho có ít nhất 2 số bằng nhau.
\(\frac{A}{B}=\frac{\frac{2000}{1}+\frac{1999}{2}+...+\frac{1}{2000}+2000}{1+\frac{1999}{2}+\frac{1998}{3}+...+\frac{1}{2000}}\)
\(=\frac{\left[\frac{2001}{1}+1\right]+\left[\frac{2001}{2}+1\right]+...+\left[\frac{2001}{2000}+1\right]+2001}{1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2000}}\)
\(=\frac{2001\left[1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2000}\right]}{1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2000}}=2001\)
ta có :
A=....0+......1=....1
Số chia hết cho 5 thì có chữ số tận cùng là 0 hoặc 5
nhưng chữ số tận cùng của A là 1
=> A\(\)không chia hết cho 5
Trong tích A có một thừa số là: 2000 – 2000 = 0. Do đó: A = B.