\(a^1,a^2,.....,a^{2000}\).Tổng các số là \...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 8 2020

Giả sử trong 2000 số nguyên dương đã cho không có 2 số nào bằng nhau

\(a_1>a_2>a_3>...>a_{2000}\ge1\)

Khi đó ta có :

\(\frac{1}{a_1}+\frac{1}{a_2}+\frac{1}{a_3}+...+\frac{1}{a_{2000}}\le1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2000}=8,1783...< 12\)

( Mâu thuẫn giả thiết )

Vậy trong 2000 số nguyên dương đã cho có ít nhất 2 số bằng nhau.

6 tháng 7 2020

a= 82

b2 = 172

c2 = 52

d= 32

e2 = 82

*Ý kiến riêng mong đc k

*Nếu bạn nghĩ mik làm sai thì bạn có thể tính lại

100% đúng nha bạn

Mik đã đi hỏi cô và cô bảo đúng :)

10 tháng 7 2020

cho mình hỏi tại sao lại như thế và dựa vào căn cứ gì mà bạn viết như vậy

17 tháng 12 2018

toán tuổi thơ 2 số 190

17 tháng 3 2018

Từng bài 1 thôi bn!

b2: \(\frac{a}{b}\cdot\frac{c}{d}=\frac{2}{5}\left(1\right)\Rightarrow\frac{ac}{bd}=\frac{2}{5}\left(3\right)\)
\(\frac{a}{b}\cdot\left(\frac{c}{d}+3\right)\left(2\right)\Rightarrow\frac{ac}{bd}+\frac{3a}{b}=\frac{28}{15}\left(4\right)\)

(4) thành \(\frac{2}{5}+\frac{3a}{b}=\frac{28}{15}\Rightarrow\frac{a}{b}=\frac{22}{45}\)

(1) thành \(\frac{22}{45}\cdot\frac{c}{d}=\frac{2}{5}\Rightarrow\frac{c}{d}=\frac{9}{11}\)

31 tháng 3 2017

\(H=\frac{1}{a^2}+\frac{2}{a^3}+\frac{3}{a^4}+...+\frac{n}{a^{n+1}}\)

\(H=\frac{a^{n-1}+2.a^{n-2}+...+\left(n-1\right).a+n}{a^{n+1}}\)

\(H=\frac{1}{a^{n+1}}.\left[\left(a^{n-2}+a^{n-2}+a+1\right)+\left(a^{n-2}+a^{n-3}+...+a+1\right)+...+\left(a+1\right)+1\right]\)

Đặt \(Sn=1+a+a^2+...+a^n\)=>\(a.Sn=a+a^2+a^3+...+a^n+a^{n+1}\)

=> \(a.Sn-Sn=a^{n+1}-1\)=>\(Sn.\left(a-1\right)=a^{n+1}-1\)=>\(Sn=\frac{a^{n+1}-1}{a-1}\)

Khi đó \(H=\frac{1}{a^{n+1}}.\left[\frac{a^n-1}{a-1}+\frac{a^{n-1}-1}{a-1}+...+\frac{a^2-1}{a-1}+\frac{a-1}{a-1}\right]\)

\(H=\frac{1}{a^{n+1}}.\left[\frac{a^n+a^{n-1}+...+a+1-\left(n+1\right)}{a-1}\right]\)

\(H=\frac{1}{a^{n+1}}.\left[\frac{a^n+a^{n-1}+...+a+1}{a-1}-\frac{n-1}{a-1}\right]\)

\(H=\frac{1}{a^{n+1}}.\left[\frac{a^{n+1}-1}{\left(a-1\right)^2}-\frac{n-1}{a-1}\right]\)

\(H=\frac{1}{a^{n+1}}.\left[\frac{a^{n+1}}{\left(a-1\right)^2}-\frac{1}{a-1}-\frac{n+1}{a-1}\right]\)

\(H=\frac{1}{\left(a-1\right)^2}-\frac{1}{a^{n+1}.\left(a-1\right)^2}-\frac{n+1}{a^{n+1}.\left(a-1\right)}< \frac{1}{\left(a-1\right)^2}\)(đpcm)

Xong rồi đó , phù.......

21 tháng 8 2019

Em vào thống kê hỏi đáp của chị mà xem bài 1

21 tháng 8 2019

thanks

12 tháng 3 2017

Đặt  \(A=\frac{1}{21}+\frac{1}{22}+\frac{1}{23}+...+\frac{1}{60}\)

=> \(A=\left(\frac{1}{21}+\frac{1}{22}+...+\frac{1}{40}\right)+\left(\frac{1}{41}+\frac{1}{42}+...+\frac{1}{60}\right)\)

Đặt A < (1/40+.....+1/40)+(1/60+1/60+...+1/60)

=>A<1/2+1/3=5/6<3/2

lớn hơn 11/15 cũng tương tự thôi bạn tự làm sẽ thú vị hơn đấy

k minh nha

12 tháng 3 2017

Thank you

12 tháng 1 2019

Làm ơn có ai làm giúp mình đi! Một bài thôi cũng được.

10 tháng 4 2019

Này m đk lm đề này ak , t bh mới đk cô cho lm . Mẹ khó vãi , mỗi câu đầu m hỏi t làm đk thôi