Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(\frac{1}{2\times3}+\frac{2}{3\times5}+\frac{3}{5\times8}+\frac{4}{8\times12}\right)\div5\)
\(=\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{12}\right)\div5\)
\(=\left(\frac{1}{2}-\frac{1}{12}\right)\div5\)
\(=\frac{5}{12}\div5\)
\(=\frac{1}{12}\)
\(\left(\frac{1}{6}+\frac{2}{15}+\frac{3}{40}+\frac{4}{96}\right):5\)
= \(\left(\frac{1}{6}+\frac{2}{15}+\frac{3}{40}+\frac{1}{24}\right):5\)
\(=\left(\frac{20}{120}+\frac{16}{120}+\frac{9}{120}+\frac{5}{120}\right):5\)
\(=\frac{50}{120}:5\)
\(=\frac{5}{12}:5\)
\(=\frac{1}{12}\)
quên tớ đang tính thì dí nhầm tớ làm lại :
= \(\dfrac{17}{8}\) : \(\dfrac{51}{40}\) - 15 + \(\dfrac{40}{3}\) : \(\dfrac{25}{6}\)
= \(\dfrac{17.5.8}{8.17.3}\) - 15 + \(\dfrac{5.8.3.2}{3.5.5}\)
= \(\dfrac{5}{3}\) - 15 + \(\dfrac{16}{5}\)
= \(\dfrac{25-225+48}{15}\)
= \(\dfrac{-152}{15}\)
Giải:
\(2\dfrac{1}{8}:1\dfrac{11}{40}-\left(15-13\dfrac{1}{3}\right):4\dfrac{1}{6}\)
\(=2\dfrac{1}{8}:1\dfrac{11}{40}-2\dfrac{1}{3}:4\dfrac{1}{6}\)
\(=\dfrac{17}{8}:\dfrac{51}{40}-\dfrac{7}{3}:\dfrac{25}{6}\)
\(=\dfrac{17}{8}.\dfrac{40}{51}-\dfrac{7}{3}.\dfrac{6}{25}\)
\(=\dfrac{17}{8}.\dfrac{8.5}{17.3}-\dfrac{7}{3}.\dfrac{3.2}{25}\)
\(=\dfrac{5}{3}-\dfrac{14}{25}\)
\(=\dfrac{83}{75}\)
Vậy ...
a, A = 2 + 22 + 23 + 24 +....+ 260
A = (2 + 22) + ( 23 + 24) +...+ (259 + 260)
A = 2.(1 + 2) + 23.(1 + 2) +...+ 259.(1 + 2)
A = 2.3 + 23.3 +...+ 259.3
A = 3.( 2 + 23+...+ 259) vì 3 ⋮ 3 ⇒ A = 3.(2 + 23 +...+ 259) ⋮ 3 (đpcm)
A = 2 + 22 + 23+ 24+...+ 260
A = ( 2 + 22 + 23) + ( 24 + 25 + 26) +...+ (258 + 259 + 260)
A = 2.( 1 + 2 + 4) + 24.(1 + 2 + 4)+...+ 258.(1 + 2+4)
A = 2.7 + 24.7 +...+258.7
A = 7.(2 + 24 + ...+ 258) vì 7 ⋮ 7 ⇒ A = 7.(2 + 24+...+ 258)⋮ 7(đpcm)
A = 2 + 22 + 23 + 24 +...+ 260
A = (2 + 22 + 23 + 24) +...+( 257 + 258 + 259+ 260)
A = 2.(1 + 2 + 22 + 23) +...+ 257.(1 + 2 + 22+23)
A = 2.30 + ...+ 257. 30
A = 30.( 2 +...+ 257) vì 30 ⋮ 15 ⇒ 30.( 2 + ...+ 257) ⋮ 15 (đpcm)
a)
- \(A=2+2^2+2^3+...+2^{60}\)
\(=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{59}+2^{60}\right)\)
\(=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{59}\left(1+2\right)\)
\(=2.3+2^3.3+...+2^{59}.3\)
\(=3\left(2+2^3+...+2^{59}\right)⋮3\)
- \(A=2+2^2+2^3+...+2^{60}\)
\(=\left(2+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{58}+2^{59}+2^{60}\right)\)
\(=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+...+2^{58}\left(1+2+2^2\right)\)
\(=2.7+2^4.7+...+2^{58}.7\)
\(=7\left(2+2^4+2^{58}\right)⋮7\)
- \(A=2+2^2+2^3+...+2^{60}\)
\(=\left(2+2^2+2^3+2^4\right)+\left(2^5+2^6+2^7+2^8\right)+...+\left(2^{57}+2^{58}+2^{59}+2^{60}\right)\)
\(=2\left(1+2+2^2+2^3\right)+2^5\left(1+2+2^2+2^3\right)+...+2^{57}\left(1+2+2^2+2^3\right)\)
\(=2.15+2^5.15+...+2^{57}.15\)
\(=15\left(2+2^5+2^{57}\right)⋮15\)
b) \(B=1+5+5^2+5^3+...+5^{96}+5^{97}+5^{98}\)
\(=\left(1+5+5^2\right)+\left(5^3+5^4+5^5\right)+...+\left(5^{96}+5^{97}+5^{98}\right)\)
\(=\left(1+5+5^2\right)+5^3\left(1+5+5^2\right)+..+5^{96}\left(1+5+5^2\right)\)
\(=31+5^3.31+...+5^{96}.31\)
\(=31\left(1+5^3+...+5^{96}\right)⋮31\)
\(A=1+3+3^2+...+3^{2016}\)
\(3A=3.\left(1+3+3^2+...+3^{2016}\right)\)
\(3A=3+3^2+3^3+...+3^{2017}\)
\(3A-A=\left(3+3^2+3^3+...+3^{2017}\right)-\left(1+3+3^2+...+3^{2016}\right)\)
\(2A=3^{2017}-1\)
\(A=\left(3^{2017}-1\right):2\)
\(B=1+6+6^2+...+6^{200}\)
\(6B=6.\left(1+6+6^2+...+6^{200}\right)\)
\(6B=6+6^2+6^3+...+6^{201}\)
\(6B-B=\left(6+6^2+6^3+...+3^{201}\right)-\left(1+6+6^2+...+6^{200}\right)\)
\(5B=6^{201}-1\)
\(B=\left(6^{201}-1\right):5\)
\(3^{x-2}.4=324\)
\(3^{x-2}=324:4\)
\(3^{x-2}=81\)
\(3^{x-2}=3^4\)
\(x-2=4\)
\(x=4+2\)
\(x=6\)
\(2x< 20\)
\(\Rightarrow x=\left\{0;1;2;3;4;5;6;7;8;9\right\}\)
ta có:
\(\left(7\frac{1}{2}.8\frac{3}{70}+8\frac{3}{70}.\frac{9}{4}+\frac{19}{4}.8\frac{3}{70}+5\frac{1}{2}.8\frac{3}{70}\right):x=1126\)
\(8\frac{3}{70}\left(7\frac{1}{2}+\frac{9}{4}+\frac{19}{4}+5\frac{1}{2}\right):x=1126\)
\(\frac{563}{70}.\left(\frac{15}{2}+7+\frac{11}{2}\right):x=1126\)
\(\frac{563}{70}.20:x=1126\)
\(\frac{1126}{70}:x=1126\)
\(=>x=\frac{1126}{7}:1126\)
\(=>x=\frac{1}{7}\)
cho mình nha các bạn.
\(\frac{2}{15}+\frac{3}{40}+\frac{4}{96}+\frac{5}{204}\)
Ta sẽ tìm mẫu số chung :
+ Ta lấy số thứ 1 nhân với 1 , 2 , 3 ...... đến khi nào cia hết cho 3 số còn lại .
+ Rồi ta quy đồng mẫu số chung
+ Rồi ta sẽ lấy tử cộng tử mẫu giữ nguyên
Nếu đáp án lớn rút gọn
Nếu Như Lời Anh Ns Thì Em làm đc
Nhưng là tình nhanh cơ