Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Dư của f(x ) chia cho x+2 là f(-2)
Áp dụng định lý Bơ-zu ta có :
\(f\left(-2\right)=\left(-2\right)^3+3.\left(-2\right)^2+a\)
\(=-8+12+a\)
\(=4+a\)
\(\Leftrightarrow a=-4\)
Vậy để f(x) chia hết cho x+2 => a= -4
b) Dư của f(x ) chia cho x-1 là f(1)
Áp dụng định lí Bơ-zu ta có :
\(f\left(1\right)=1^2-3.1+a\)
\(=1-3+a\)
\(=-2+a\)
\(\Rightarrow a=2\)
Vậy ..............
c)
Đặt phép chia dọc theo đa thức 1 biến đã sắp xếp
d) Theo định lí Bơ-zu ta có :
\(f\left(x\right):x+1\)có dư là \(f\left(-1\right)\)
\(f\left(-1\right)=\left(-1\right)^3+a.\left(-1\right)+b\)
\(=-a+b-1\)
Mà theo đề bài cho dư = 7
\(\Rightarrow-a+b-1=7\)
\(\Rightarrow-a+b=8\) (1)
Tương tự :
\(f\left(x\right):x-1\)có dư là \(f\left(1\right)\)
\(f\left(1\right)=1^3+a.1+b\)
\(=a+b+1\)
Theo đề bài cho dư 7
\(\Rightarrow a+b+1=7\)
\(\Rightarrow a+b=6\)(2)
Từ (1) và (2) ( cộng vế với vế)
\(\Rightarrow\hept{\begin{cases}a+b=6\\-a+b=8\end{cases}}\)
\(\Rightarrow2b=14\)
\(\Rightarrow b=7\)
\(\Leftrightarrow a+7=6\)
\(\Rightarrow a=-1\)
Vậy \(f\left(x\right)=x^3-x+7\)
a=0
Do: A=1^4+2.1^2-1^3+1-0=0
B=1-1=0. mà 0 thì chia hết cho 0.
a) Có \(\dfrac{x^4-x^3+6x^2-x+n}{x^2-x+5}\) được thương là x2 +1 và dư n-5
Vậy để đa thức trên chia hết thì n-5 = 0 => n = 5
b) Có \(\dfrac{3x^3+10x^2-5+n}{3x+1}\) được thương là x2 + 3x -1 và dư -4 +n
Vậy để đa thức trên chia hết thì -4 + n = 0 => n = 4
c) Theo đề bài ta có:
\(\dfrac{2n^2+n-7}{n-2}=2n+5+\dfrac{3}{n-2}\)
Với n nguyên để đa thức trên chia hết thì ( n - 2) phải thuộc ước của 3
Từ đó, ta có:
n-2 | n |
-1 | 1 |
1 | 3 |
-3 | -1 |
3 | 5 |
Vậy khi n đạt những giá trị trên thì đa thức trên sẽ chia hết
ko có GT thỏa mãn