K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 10 2019

c) Cách 1:

x^4+3x^3-x^2+ax+b x^2+2x-3 x^2+x x^4+2x^3-3x^2 - x^3+2x^2+ax+b x^3+2x^2-3x - (a+3)x+b

Để \(P\left(x\right)⋮Q\left(x\right)\)

\(\Leftrightarrow\left(a+3\right)x+b=0\)

\(\Leftrightarrow\hept{\begin{cases}a+3=0\\b=0\end{cases}\Leftrightarrow}\hept{\begin{cases}a=-3\\b=0\end{cases}}\)

Vậy a=-3 và b=0 để \(P\left(x\right)⋮Q\left(x\right)\)

19 tháng 10 2019

a) 

  2n^2-n+2 2n+1 n-1 2x^2+n - -2n+2 -2n-1 - 3

Để \(2n^2-n+2⋮2n+1\)

\(\Leftrightarrow3⋮2n+1\)

\(\Leftrightarrow2n+1\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)

\(\Leftrightarrow n\in\left\{0;1;-2;-1\right\}\)

Vậy \(n\in\left\{0;1;-2;-1\right\}\)để \(2n^2-n+2⋮2n+1\)

19 tháng 11 2020

a) \(x^3+x^2-x+a=\left(x^2-x+1\right)\left(x+2\right)+\left(a-2\right)\).

Đa thức trên chia hết cho \(x+2\) khi và chỉ khi a = 2.

b) \(x^3+ax^2+2x+b=\left(x^2+x+1\right)\left(x+1\right)+\left(a-2\right)x^2+\left(b-1\right)\) chia hết cho \(x^2+x+1\) khi và chỉ khi:

\(\frac{a-2}{1}=\frac{0}{1}=\frac{b-1}{1}\Leftrightarrow a=2;b=1\).

c) Tương tự.

26 tháng 10 2017

Nếu tối chưa có ai làm thì để mình làm cho,bây h mk bận phải đi học r

Giải:

Để có phép chia hết thì số dư bằng 0 ⇒a−5=0⇒a=5



22 tháng 10 2019

2x^3+3x^2-x+a x^2+x-1 2x+1 2x^3+x^2 - - 2x^2-x+a 2x^2+x -2x+a -2x-1 - a+1

Để \(A\left(x\right)⋮B\left(x\right)\Leftrightarrow a+1=0\)

                              \(\Leftrightarrow a=-1\)

Vậy ...

20 tháng 8 2017

a) Có \(\dfrac{x^4-x^3+6x^2-x+n}{x^2-x+5}\) được thương là x2 +1 và dư n-5
Vậy để đa thức trên chia hết thì n-5 = 0 => n = 5

b) Có \(\dfrac{3x^3+10x^2-5+n}{3x+1}\) được thương là x2 + 3x -1 và dư -4 +n
Vậy để đa thức trên chia hết thì -4 + n = 0 => n = 4

c) Theo đề bài ta có:
\(\dfrac{2n^2+n-7}{n-2}=2n+5+\dfrac{3}{n-2}\)
Với n nguyên để đa thức trên chia hết thì ( n - 2) phải thuộc ước của 3
Từ đó, ta có:

n-2 n
-1 1
1 3
-3 -1
3 5

Vậy khi n đạt những giá trị trên thì đa thức trên sẽ chia hết

24 tháng 8 2017

thank you!!

19 tháng 10 2019

a) ta có (2n2-n+2)/(2n+1)=n-1(dư 3)

vậy muốn 2n2-n+2 chia hết cho 2n+1 thì 2n+1ϵƯ(3)

mà Ư(3)={-3;-1;1;3}

nên

2n+1=-3 và 2n+1=-1 và 2n+1=1 và 2n+1=3

=> 2n=-4 và 2n=-2 và 2n=0 và 2n=2

=> n=-2 và n=-1 và n=0 và n=1

vậy nϵ{-2;-1;0;1}

b) ta có x3+x2-x+a/(x+1)2=x-1(dư -x2-2x+a)

\(x^2-2x+a-\left(-x^2-2x-1\right)=a+1\)

và muốn \(x^3+x^2-x+a\) chia hết cho \(\left(x+1\right)^2\)thì a+1=0

=> a=-1