Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{34+24\sqrt{2}}=\sqrt{18+2.3\sqrt{2}.4+16}\)
\(=\sqrt{\left(3\sqrt{2}+4\right)^2}=3\sqrt{2}+4\)
a/ \(\sqrt{a^4b^5}=a^2b^2\sqrt{b}\)
b/ \(\sqrt{a^6b^{11}}=a^3b^5\sqrt{b}\)
\(\frac{2xy^2}{3ab}\sqrt{\frac{9a^3b^4}{8xy^3}}=\frac{2xy^2}{3ab}\frac{3\sqrt{a^2.a}\sqrt{\left(b^2\right)^2}}{2\sqrt{2xy^2.y}}\)
\(=\frac{2xy^2}{3ab}\frac{3a\sqrt{a}b^2}{2y\sqrt{2xy}}=\frac{6xy^2ab^2\sqrt{a}}{6aby\sqrt{2xy}}=\frac{bxy\sqrt{a}}{\sqrt{2xy}}\)
\(=\frac{bxy\sqrt{2axy}}{2xy}=\frac{b\sqrt{2axy}}{2}\)
a,\(-\sqrt{10x^2\cdot y\left(3-\sqrt{2}\right)^2}=-\left|x\right|\) \(\cdot\left(3-\sqrt{2}\right)\cdot\sqrt{10y}\)
xet th \(x\ge0\) ta co \(-x\cdot\left(3-\sqrt{2}\right)\sqrt{10y}\)
xet th \(x< 0\) ta có \(x\left(3-\sqrt{2}\right)\sqrt{10y}\)
b,\(\sqrt{3\left(x^2-2xy+y^2\right)}=\) \(\sqrt{3\cdot\left(x-y\right)^2}=\left|x-y\right|\sqrt{3}\)
a) \(\sqrt{27x^2}=\sqrt{3.\left(3x\right)^2}=\left|3x\right|.\sqrt{3}=3x\sqrt{3}\left(x>0\right)\)
b) \(\sqrt{8xy^2}=\left|y\right|.2\sqrt{2x}=-2y\sqrt{2x}\left(x\ge0,y\le0\right)\)
1) \(x\sqrt{13}=\sqrt{13x^2}\left(x\ge0\right)\)
2) \(x\sqrt{-15x}=-\left|x\right|\sqrt{15x}=-\sqrt{15x^3}\left(x< 0\right)\)
3) \(x\sqrt{2}=-\left|x\right|\sqrt{2}=-\sqrt{2x^2}\left(x\le0\right)\)
\(\frac{1}{x-y}.\sqrt{x^4\left(x^2+y^2-2xy\right)}\)
\(=\frac{1}{x-y}.\sqrt{\left(x^2\right)^2.\left(x-y\right)^2}\)
\(=\frac{1}{x-y}\left(x-y\right)x^2\)
\(=x^2\)
Nếu sai mong bạn thông cảm:
\(\sqrt{50.6}=\sqrt{300}=\sqrt{2^2.5^2.3}=2.5\sqrt{3}=10\sqrt{3}\)
cảm ơn bạn rất nhiều nhé !