K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 7 2016

ĐK: \(4x^2+5x+1\ge0\Leftrightarrow\left(4x+1\right)\left(x+1\right)\ge0\)

<=>\(\orbr{\begin{cases}x\le-1\\x\ge\frac{-1}{4}\end{cases}}\)

PT trên tương đương: \(\sqrt{4x^2+5x+1}-\sqrt{4x^2-4x+4}=9x-3\)

Đặt \(a=\sqrt{4x^2+5x+1}\ge0;b=\sqrt{4x^2-4x+4}>0\) ta có hệ PT:

\(\hept{\begin{cases}a-b=9x-3\\a^2-b^2=9x-3\end{cases}}\Leftrightarrow a-b=a^2-b^2\)

<=>a-b=(a-b)(a+b)

<=>(a-b)(1-a-b)=0

<=>a=b hoặc 1-a-b=0

*Khi a=b  thì: \(\sqrt{4x^2+5x+1}=\sqrt{4x^2-4x+4}\Leftrightarrow9x-3=0\)

<=>x=1/3(nhận)

*Khi 1-a-b=0 =>a+b=1 

=>\(\sqrt{4x^2+5x+1}+\sqrt{4x^2-4x+4}=1\)(vô lí vì: \(\sqrt{4x^2+5x+1}+\sqrt{4x^2-4x+4}\ge\sqrt{3}>1\))

Vậy tập nghiệm của PT là: S={1/3}

18 tháng 7 2016

kho nhi

19 tháng 7 2016

đặt \(\sqrt{3x-2}=a\) và \(\sqrt{x-1}=b\)=> \(\sqrt{3x^2-5x+2}=ab\)

và \(4x=a^2+b^2+3\)

khi đó pt trên trở thành \(a+b=a^2+b^2+3+9+2ab\)

    đặt a+b=t thì pt trên trở thành \(t=12+t^2\)

                     <=> \(t^2-t+12=0\)

đến đây vô nghiệm rùi  nên cả pt vô nghiệm 

19 tháng 7 2016

nk bạn mk nghĩ cái căn đầu tiên phải là \(\sqrt{3x-2}\) chứ

20 tháng 7 2016

nhân liên hợp nhé

18 tháng 7 2016

đặt \(\sqrt{x-\sqrt{x^2-1}}=a\) và \(\sqrt{x+\sqrt{x^2-1}}=b\)

ta có hệ pt \(\hept{\begin{cases}ab=1\\\sqrt{a}+b=2\end{cases}}\)

đến đây cậu giải nốt nha

18 tháng 7 2016

to khong biet

3 tháng 4 2020

Câu 1 là \(\left(8x-4\right)\sqrt{x}-1\) hay là \(\left(8x-4\right)\sqrt{x-1}\)?

3 tháng 4 2020

Câu 1:ĐK \(x\ge\frac{1}{2}\)

\(4x^2+\left(8x-4\right)\sqrt{x}-1=3x+2\sqrt{2x^2+5x-3}\)

<=> \(\left(4x^2-3x-1\right)+4\left(2x-1\right)\sqrt{x}-2\sqrt{\left(2x-1\right)\left(x+3\right)}\)

<=> \(\left(x-1\right)\left(4x+1\right)+2\sqrt{2x-1}\left(2\sqrt{x\left(2x-1\right)}-\sqrt{x+3}\right)=0\)

<=> \(\left(x-1\right)\left(4x+1\right)+2\sqrt{2x-1}.\frac{8x^2-4x-x-3}{2\sqrt{x\left(2x-1\right)}+\sqrt{x+3}}=0\)

<=>\(\left(x-1\right)\left(4x+1\right)+2\sqrt{2x-1}.\frac{\left(x-1\right)\left(8x+3\right)}{2\sqrt{x\left(2x-1\right)}+\sqrt{x+3}}=0\)

<=> \(\left(x-1\right)\left(4x+1+2\sqrt{2x-1}.\frac{8x+3}{2\sqrt{x\left(2x-1\right)}+\sqrt{x+3}}\right)=0\)

Với \(x\ge\frac{1}{2}\)thì \(4x+1+2\sqrt{2x-1}.\frac{8x-3}{2\sqrt{x\left(2x-1\right)}+\sqrt{x+3}}>0\)

=> \(x=1\)(TM ĐKXĐ)

Vậy x=1

15 tháng 7 2016

\(\sqrt{2-x^2}+\sqrt{2-\frac{1}{x^2}}=4-\left(x+\frac{1}{x}\right)\)

\(\Rightarrow2-x^2+2-\frac{1}{x^2}+2\sqrt{\left(2-x^2\right)\left(2-\frac{1}{x^2}\right)}=16-8\left(x+\frac{1}{x}\right)+\left(x+\frac{1}{x}\right)^2\)

\(\Rightarrow4-\left(x^2+\frac{1}{x^2}\right)+2\sqrt{5-2\left(x^2+\frac{1}{x^2}\right)}=16-8\left(x+\frac{1}{x}\right)+\left(x+\frac{1}{x}\right)^2\)

\(\Rightarrow x^2+\frac{1}{x^2}+2\sqrt{5-2\left(x^2+\frac{1}{x^2}\right)}=8\left(x+\frac{1}{x}\right)-\left(x+\frac{1}{x}\right)^2-12\)

Đặt \(a=x+\frac{1}{x}\Rightarrow\left|a\right|=\left|x+\frac{1}{x}\right|=\left|x\right|+\frac{1}{\left|x\right|}\ge2\Rightarrow\left|a\right|\ge2\)

Phươn trình trở thành:

\(a^2-2+2\sqrt{5-2\left(a^2-2\right)}=8a-a^2-12\)

Tớ nghĩ là theo cách này có vẻ khả quan

26 tháng 8 2018

1,

\(D=\frac{1}{\sqrt{h+2\sqrt{h-1}}}+\frac{1}{\sqrt{h-2\sqrt{h-1}}}\)

\(=\frac{1}{\sqrt{h-1+2\sqrt{h-1}+1}}+\frac{1}{\sqrt{h-1-2\sqrt{h-1}+1}}\)

\(=\frac{1}{\sqrt{h-1}+1}+\frac{1}{\sqrt{h-1}-1}\)

\(=\frac{\sqrt{h-1}-1+\sqrt{h-1}+1}{h-1-1}\)

\(=\frac{2\sqrt{h-1}}{h-2}\)

Thay \(h=3\)vào D ta có:

\(D=\frac{2\sqrt{3-1}}{3-2}=2\sqrt{2}\)

Vậy với \(h=3\)thì \(D=2\sqrt{2}\)

2,

a, \(\sqrt{x-1}+\sqrt{4x-4}-\sqrt{25x-25}+2=0\)(ĐK: \(x\ge1\))

\(\Leftrightarrow\sqrt{x-1}+2\sqrt{x-1}-5\sqrt{x-1}+2=0\)

\(\Leftrightarrow-2\sqrt{x-1}=-2\)

\(\Leftrightarrow\sqrt{x-1}=1\Leftrightarrow x=2\left(TM\right)\)

Vậy PT có nghiệm là \(x=2\)

b, \(\sqrt{9x^2+18}+2\sqrt{x^2+2}-\sqrt{25x^2+50}+3=0\)(ĐK: \(-\sqrt{2}\le x\le\sqrt{2}\))

\(\Leftrightarrow3\sqrt{x^2+2}+2\sqrt{x^2+2}-5\sqrt{x^2+2}=-3\)

\(\Leftrightarrow0=-3\)(vô lí)

Vậy PT đã cho vô nghiệm.

28 tháng 5 2020

ĐKXĐ : \(x\ge1\)

PT đã cho tương đương với :

\(\sqrt{3x-2}+\sqrt{x-1}=\left[3x-2+2\sqrt{3x^2-5x+2}+x-1\right]-6\)

\(\Leftrightarrow\sqrt{3x-2}+\sqrt{x-1}=\left(\sqrt{3x-2}+\sqrt{x-1}\right)^2-6\)

Đặt \(\sqrt{3x-2}+\sqrt{x-1}=t\left(t\ge1\right)\)

Khi đó : \(t^2-t-6=0\Leftrightarrow\orbr{\begin{cases}t=3\\t=-2\left(loai\right)\end{cases}}\)

\(\Rightarrow\sqrt{3x-2}+\sqrt{x-1}=3\)

từ đó dễ dàng tìm được x

29 tháng 5 2020

Làm tiếp bài của @Thanh Tùng DZ

Thay t=3 vào cách đặt ta được \(\sqrt{3x-2}+\sqrt{x-1}=3\left(3a\right)\)

Ta có \(\left(3a\right)\Leftrightarrow4x-3+2\sqrt{3x^2-5x+2}=9\)

\(\Leftrightarrow\sqrt{3x^2-5x+2}=6-2x\)

\(\Leftrightarrow\hept{\begin{cases}6-2x\ge0\\3x^2-5x+2=36-24x+4x^2\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x\le3\\x=2;x=17\end{cases}\Leftrightarrow x=2}\)

20 tháng 7 2016

chuyển căn bậc 2 ( x - 1 ) sang vế phải rồi đặt điều kiện cho 2 vế không âm rồi bình phương 2 vế sau đó giải như bth

20 tháng 7 2016

như vậy ai mà chả làm đc