K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 8 2016

a) \(\sqrt{28}+\sqrt{125}-3\sqrt{343}-\frac{3}{8}\sqrt{396}=2\sqrt{7}+5\sqrt{5}-21\sqrt{7}-\frac{9\sqrt{11}}{4}\)

\(=-19\sqrt{7}+5\sqrt{5}-\frac{9\sqrt{11}}{4}\)

b) \(\sqrt{17-3\sqrt{32}}+\sqrt{17+3\sqrt{32}}=\sqrt{17-12\sqrt{2}}+\sqrt{17+12\sqrt{2}}\)

\(=\sqrt{\left(2\sqrt{2}-3\right)^2}+\sqrt{\left(2\sqrt{2}+3\right)^2}=\left(3-2\sqrt{2}\right)+2\sqrt{2}+3=6\)

22 tháng 6 2018

Bài làm của: Phùng Khánh Linh

c)\(\sqrt{17-12\sqrt{2}}-\sqrt{24-8\sqrt{8}}\)

= \(\sqrt{3^2-2.3.2\sqrt{2}+\left(2\sqrt{2}\right)^2}\) \(-\) \(\sqrt{4^2-2.4.\sqrt{8}+\left(\sqrt{8}\right)^2}\)

= \(\sqrt{\left(3-2\sqrt{2}\right)^2}\) \(-\) \(\sqrt{\left(4-\sqrt{8}\right)^2}\)

= \(\left|3-2\sqrt{2}\right|-\left|4-\sqrt{8}\right|\)

= (3 - 2\(\sqrt{2}\)) - (4 - \(\sqrt{8}\))

= 3 - 2\(\sqrt{2}\) - 4 + \(\sqrt{8}\)

= -1

22 tháng 6 2018

\(a.\sqrt{4+2\sqrt{3}}-\sqrt{4-2\sqrt{3}}=\sqrt{3+2\sqrt{3}.1+1}-\sqrt{3-2\sqrt{3}.1+1}=\sqrt{\left(\sqrt{3}+1\right)^2}-\sqrt{\left(\sqrt{3}-1\right)^2}=\text{|}\sqrt{3}+1\text{|}-\text{|}\sqrt{3}-1\text{|}=2\)\(b.\sqrt{9-4\sqrt{5}}-\sqrt{9+4\sqrt{5}}=\sqrt{5-4\sqrt{5}+4}-\sqrt{5+4\sqrt{5}+4}=\sqrt{\left(\sqrt{5}-2\right)^2}-\sqrt{\left(\sqrt{5}+2\right)^2}=\text{|}\sqrt{5}-2\text{|}-\text{|}\sqrt{5}+2\text{|}=-4\) Còn lại tương tự nhé .

25 tháng 7 2019
https://i.imgur.com/g7mbF2P.jpg
19 tháng 7 2018

1. \(\sqrt{5+2\sqrt{6}}-\sqrt{5-2\sqrt{6}}\)

\(=\sqrt{\left(\sqrt{2}+\sqrt{3}\right)^2}-\sqrt{\left(\sqrt{3}-\sqrt{2}\right)^2}\)

\(=\sqrt{2}+\sqrt{3}-\sqrt{3}+\sqrt{2}\)

\(=2\sqrt{2}\)

4 tháng 7 2017

\(=\sqrt{17-12\sqrt{2}}-\sqrt{17+12\sqrt{2}}\)

\(=\sqrt{\left(2\sqrt{2}-3\right)^2}-\sqrt{\left(2\sqrt{2}+3\right)^2}\)

\(=-\left(2\sqrt{2}-3\right)-\left(2\sqrt{2}+3\right)=-2\sqrt{2}+3-2\sqrt{2}-3\)

\(=-4\sqrt{2}\)

25 tháng 7 2018

f, \(\sqrt{\sqrt{5}+\sqrt{3-\sqrt{29-12\sqrt{5}}}}=\sqrt{\sqrt{5}+\sqrt{3-\sqrt{\left(2\sqrt{5}-3\right)^2}}}=\sqrt{\sqrt{5}+\sqrt{3-2\sqrt{5}+3}}=\sqrt{\sqrt{5}+\sqrt{6-2\sqrt{5}}}=\sqrt{\sqrt{5}+\sqrt{\left(\sqrt{5}-1\right)^2}}=\sqrt{\sqrt{5}+\sqrt{5}-1}=\sqrt{2\sqrt{5}-1}\)

25 tháng 7 2018

mik sửa lại câu f , tí nhé :

f , \(\sqrt{\sqrt{5}+\sqrt{3-\sqrt{29-12\sqrt{5}}}}\)

14 tháng 8 2020

a, \(\sqrt{15-6\sqrt{6}}+\sqrt{35-12\sqrt{6}}\)

= \(\sqrt{3^2-2.3.\sqrt{6}+\left(\sqrt{6}\right)^2}+\sqrt{6^2-2.6.\sqrt{6}+\left(\sqrt{6}\right)^2}\)

= \(\sqrt{\left(3-\sqrt{6}\right)^2}+\sqrt{\left(6-\sqrt{6}\right)^2}\)

= \(\left|3-\sqrt{6}\right|+\left|6-\sqrt{6}\right|\)

= \(3-\sqrt{6}+6-\sqrt{6}\)

= \(9-2\sqrt{6}\)

b. Đặt B = \(\sqrt{17-3\sqrt{32}}+\sqrt{17+3\sqrt{32}}\)

Nhận xét : B > 0 , bình phương hai vế ta được :

\(B^2=\left(\sqrt{17-3\sqrt{32}}\right)^2+\left(\sqrt{17+3\sqrt{32}}\right)^2\)

\(B^2=17-3\sqrt{32}+17+3\sqrt{32}+2\sqrt{\left(17-3\sqrt{32}\right)\left(17+3\sqrt{32}\right)}\)

\(B^2=34+2\sqrt{17^2-\left(3\sqrt{32}\right)^2}\)

\(B^2=34+2\sqrt{289-288}\)

\(B^2=34+2=36\)

=> \(B=\pm\sqrt{36}\) mà B > 0 nên \(B=\sqrt{36}=6\)

c, Đặt C = \(\sqrt{49-5\sqrt{96}}+\sqrt{49+5\sqrt{96}}\)

Nhận xét : C > 0 , bình phương hai vế ta đươc :

\(C^2=\left(\sqrt{49-5\sqrt{96}}\right)^2+\left(\sqrt{49+5\sqrt{96}}\right)^2\)

\(C^2=49-5\sqrt{96}+49+5\sqrt{96}+2\sqrt{\left(49-5\sqrt{96}\right)\left(49+5\sqrt{96}\right)}\)

\(C^2=98+2\sqrt{49^2-\left(5\sqrt{96}\right)^2}\)

\(C^2=98+2\sqrt{2401-2400}\)

\(C^2=98+2=100\)

=> \(C=\pm\sqrt{100}\) mà C > 0 nên \(C=\sqrt{100}=10\)

a) Ta có: \(\sqrt{15-6\sqrt{6}}+\sqrt{35-12\sqrt{6}}\)

\(=\sqrt{9-2\cdot3\cdot\sqrt{6}+6}+\sqrt{27-2\cdot3\sqrt{3}\cdot2\sqrt{2}+8}\)

\(=\sqrt{\left(3-\sqrt{6}\right)^2}+\sqrt{\left(3\sqrt{3}-2\sqrt{2}\right)^2}\)

\(=\left|3-\sqrt{6}\right|+\left|3\sqrt{3}-2\sqrt{2}\right|\)

\(=3-\sqrt{6}+3\sqrt{3}-2\sqrt{2}\)(Vì \(\left\{{}\begin{matrix}3>\sqrt{6}\\3\sqrt{3}>2\sqrt{2}\end{matrix}\right.\))

b) Ta có: \(\sqrt{17-3\sqrt{32}}+\sqrt{17+3\sqrt{32}}\)

\(=\frac{\sqrt{34-6\sqrt{32}}+\sqrt{34+6\sqrt{32}}}{\sqrt{2}}\)

\(=\frac{\sqrt{18-2\cdot3\sqrt{2}\cdot4+16}+\sqrt{18+2\cdot3\sqrt{2}\cdot4+16}}{\sqrt{2}}\)

\(=\frac{\sqrt{\left(3\sqrt{2}-4\right)^2}+\sqrt{\left(3\sqrt{2}+4\right)^2}}{\sqrt{2}}\)

\(=\frac{\left|3\sqrt{2}-4\right|+\left|3\sqrt{2}+4\right|}{\sqrt{2}}\)

\(=\frac{3\sqrt{2}-4+3\sqrt{2}+4}{\sqrt{2}}\)(Vì \(3\sqrt{2}>4>0\))

\(=\frac{6\sqrt{2}}{\sqrt{2}}=6\)