K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 2 2017

Chọn B.

Ta có: Δ = (m - 2 ) 2  - (m - 1)(m - 3) = ( m 2  - 4m + 4 ) - ( m 2  - 4m + 3) = 1 > 0

Phương trình có hai nghiệm phân biệt x1, x2.

Áp dụng hệ thức Vi-ét ta có:

Đề kiểm tra 45 phút Đại số 10 Chương 4 có đáp án (Đề 2)

Ta có:

Đề kiểm tra 45 phút Đại số 10 Chương 4 có đáp án (Đề 2)

Đề kiểm tra 45 phút Đại số 10 Chương 4 có đáp án (Đề 2)

Đề kiểm tra 45 phút Đại số 10 Chương 4 có đáp án (Đề 2)

Đề kiểm tra 45 phút Đại số 10 Chương 4 có đáp án (Đề 2)

Đề kiểm tra 45 phút Đại số 10 Chương 4 có đáp án (Đề 2)

6 tháng 4 2017

1) b)

Phương trình trên tương đương

\(\dfrac{1}{\left(x+4\right)\left(x+5\right)}-\dfrac{1}{\left(x+3\right)\left(x+4\right)}=\dfrac{x^2-2x-33}{\left(x+3\right)\left(x+5\right)}\)

ĐKXĐ: \(x\ne-3;x\ne-4;x\ne-5\)

\(\dfrac{x+3-x-5}{\left(x+3\right)\left(x+4\right)\left(x+5\right)}=\dfrac{\left(x^2-2x-33\right)\left(x+4\right)}{\left(x+3\right)\left(x+4\right)\left(x+5\right)}\)

\(-2=x^3+4x^2-2x^2-8x-33x-132\)

\(x^3+2x^2-41x-130=0\)

\(x^3+5x^2-3x^2-15x-26x-130=0\)

\(x^2\left(x+5\right)-3x\left(x+5\right)-26\left(x+5\right)=0\)

\(\left(x^2-3x-26\right)\left(x+5\right)=0\)

\(\Rightarrow x=-5\)(Loại)

\(x^2-3x-26=0\)

Phân tích thành nhân tử cũng được nhưng nếu box lớp 10 thì chơi kiểu khác

\(\Delta=\left(-3\right)^2-4.1.\left(-26\right)=113\)

\(x_1=\dfrac{3-\sqrt{113}}{2}\)

\(x_2=\dfrac{3+\sqrt{113}}{2}\)

Phương trình có 2 nghiệm trên

6 tháng 4 2017

5) 0<a<b, ta có: a<b

<=> a.a<a.b

<=>a2<a.b

<=>\(a< \sqrt{ab}\)(1)

- BĐT Cauchy:

\(\dfrac{a+b}{2}\ge\sqrt{ab}\) khi \(a\ge0;b\ge0\)

\(\Leftrightarrow\sqrt{ab}\le\dfrac{a+b}{2}\)

Dấu = xảy ra khi a=b=0 mà 0<a<b

=> \(\sqrt{ab}< \dfrac{a+b}{2}\)(2)

- 0<a<b, ta có: a<b<=> a+b<b+b

\(\Leftrightarrow\)\(\dfrac{a+b}{2}< \dfrac{b+b}{2}\)

\(\Leftrightarrow\dfrac{a+b}{2}< b\left(3\right)\)

Từ (1), (2), (3), ta có đpcm

16 tháng 3 2020

Bạn hỏi hay trả lời vậy?

NV
15 tháng 5 2020

Để tam thức đổi dấu 2 lần

\(\Leftrightarrow x^2-\left(m+2\right)x+8m+1=0\) có 2 nghiệm pb

\(\Leftrightarrow\Delta=\left(m+2\right)^2-4\left(8m+1\right)>0\)

\(\Leftrightarrow m^2-28m>0\Rightarrow\left[{}\begin{matrix}m>28\\m< 0\end{matrix}\right.\)

15 tháng 5 2020

Đổi dấu 2 lần nghĩa là sao ạ? :(

25 tháng 6 2020

(m- 5)x2 + 2 . (m -1) x + m = 0

\(\Delta^'\)= (m -1)2 - m.(m - 5) = 3m + 1

để pt có 2 nghiệm pb thì \(\Delta^'>0\)

=> m > -1/3 (1)

Theo hệ thức vi ét ta có

x1 + x2 = \(\frac{-2.\left(m-1\right)}{m-5}\) x1.x2= \(\frac{m}{m-5}\)

x1 < 2 < x2

\(\left\{{}\begin{matrix}x1-2< 0\\x2-2>0\end{matrix}\right.\Rightarrow\left(x1-2\right)\left(x2-2\right)< 0}\)=> x1.x2 - 2. (x1 + x2) + 4 <0

\(\frac{m}{m-5}+2.\frac{m-1}{m-5}+4< 0\)

=> m + 2m -2 + 4m - 20 < 0

<=> 7m -22 <0

<=> m < 22/7 (2)

từ (1) và (2) => -1/3 < m < 22/7

#mã mã#

12 tháng 2 2020

~Mong mn giúp!!!vui

6 tháng 4 2017

\(\left\{{}\begin{matrix}2x-\left(m^2+m+1\right)y=-m^2-9\left(1\right)\\m^4x+\left(2m^2+1\right)y=1\left(2\right)\end{matrix}\right.\)

rút x từ (1) thế vào (2)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{\left(m^2+m+1\right)y-m^2-9}{2}\left(3\right)\\m^4\left[\dfrac{\left(m^2+m+1\right)y-m^2-9}{2}\right]+\left(2m^2+1\right)y=1\left(4\right)\end{matrix}\right.\)

\(\left(4\right)\Leftrightarrow m^4\left(m^2+m+1\right)y-m^4\left(m^2+9\right)+2\left(2m^2+1\right)y=2\)

\(\Leftrightarrow\left[m^4\left(m^2+m+1\right)+4m^2+2\right]y=m^4\left(m^2+9\right)+2\)

\(\Leftrightarrow Ay=B\)

Taco

\(\left\{{}\begin{matrix}m^2+m+1=\left(m+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\forall m\in R\\4m^2+2>0\forall m\in R\\m^4\left(m^2+9\right)>0\forall m\in R\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}A>0\forall m\in R\\B>0\forall m\in R\end{matrix}\right.\)

\(\Rightarrow y>0\forall m\in R\)

Kết luận không có m thủa mãn