\(^2\)+ 2(m-1)x+m=0. với giá trị nào của m thì có 2 nghiệm x
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 6 2020

(m- 5)x2 + 2 . (m -1) x + m = 0

\(\Delta^'\)= (m -1)2 - m.(m - 5) = 3m + 1

để pt có 2 nghiệm pb thì \(\Delta^'>0\)

=> m > -1/3 (1)

Theo hệ thức vi ét ta có

x1 + x2 = \(\frac{-2.\left(m-1\right)}{m-5}\) x1.x2= \(\frac{m}{m-5}\)

x1 < 2 < x2

\(\left\{{}\begin{matrix}x1-2< 0\\x2-2>0\end{matrix}\right.\Rightarrow\left(x1-2\right)\left(x2-2\right)< 0}\)=> x1.x2 - 2. (x1 + x2) + 4 <0

\(\frac{m}{m-5}+2.\frac{m-1}{m-5}+4< 0\)

=> m + 2m -2 + 4m - 20 < 0

<=> 7m -22 <0

<=> m < 22/7 (2)

từ (1) và (2) => -1/3 < m < 22/7

#mã mã#

NV
5 tháng 2 2020

Đặt \(x^2=t\ge0\Rightarrow x=\pm\sqrt{t}\)

Phương trình trở thành: \(t^2-3mt+m^2+1=0\)

Theo định lý Viet: \(\left\{{}\begin{matrix}t_1+t_2=3m\\t_1t_2=m^2+1\end{matrix}\right.\)

\(\left\{{}\begin{matrix}x_1=\sqrt{t_1}\\x_2=-\sqrt{t_1}\\x_3=\sqrt{t_2}\\x_4=-\sqrt{t_2}\end{matrix}\right.\) \(\Rightarrow x_1+x_2+x_3+x_4=0\)

Lại có \(x_1x_2=\sqrt{t_1}.\left(-\sqrt{t_1}\right)=-t_1\) ; tương tự \(x_3x_4=-t_2\)

\(\Rightarrow x_1x_2x_3x_4=t_1t_2=m^2+1\)

\(\Rightarrow M=m^2+1\)

10 tháng 12 2017

mk sửa có dấu phẩy sau các chứ f trên đấu bài nha.

giúp mk đi mn

10 tháng 12 2017

@Nguyễn Huy Tú

NV
23 tháng 5 2019

\(a^2=64\Rightarrow a=8\)

Theo tính chất elip, do M, N thuộc elip nên ta có:

\(\left\{{}\begin{matrix}MF_1+MF_2=2a=16\\NF_1+NF_2=2a=16\end{matrix}\right.\)

\(\Rightarrow MF_1+MF_2+NF_1+NF_2=16+16=32\)

\(\Rightarrow MF_2+NF_1=32-\left(MF_1+NF_2\right)=32-17=15\)

6 tháng 4 2017

1) b)

Phương trình trên tương đương

\(\dfrac{1}{\left(x+4\right)\left(x+5\right)}-\dfrac{1}{\left(x+3\right)\left(x+4\right)}=\dfrac{x^2-2x-33}{\left(x+3\right)\left(x+5\right)}\)

ĐKXĐ: \(x\ne-3;x\ne-4;x\ne-5\)

\(\dfrac{x+3-x-5}{\left(x+3\right)\left(x+4\right)\left(x+5\right)}=\dfrac{\left(x^2-2x-33\right)\left(x+4\right)}{\left(x+3\right)\left(x+4\right)\left(x+5\right)}\)

\(-2=x^3+4x^2-2x^2-8x-33x-132\)

\(x^3+2x^2-41x-130=0\)

\(x^3+5x^2-3x^2-15x-26x-130=0\)

\(x^2\left(x+5\right)-3x\left(x+5\right)-26\left(x+5\right)=0\)

\(\left(x^2-3x-26\right)\left(x+5\right)=0\)

\(\Rightarrow x=-5\)(Loại)

\(x^2-3x-26=0\)

Phân tích thành nhân tử cũng được nhưng nếu box lớp 10 thì chơi kiểu khác

\(\Delta=\left(-3\right)^2-4.1.\left(-26\right)=113\)

\(x_1=\dfrac{3-\sqrt{113}}{2}\)

\(x_2=\dfrac{3+\sqrt{113}}{2}\)

Phương trình có 2 nghiệm trên

6 tháng 4 2017

5) 0<a<b, ta có: a<b

<=> a.a<a.b

<=>a2<a.b

<=>\(a< \sqrt{ab}\)(1)

- BĐT Cauchy:

\(\dfrac{a+b}{2}\ge\sqrt{ab}\) khi \(a\ge0;b\ge0\)

\(\Leftrightarrow\sqrt{ab}\le\dfrac{a+b}{2}\)

Dấu = xảy ra khi a=b=0 mà 0<a<b

=> \(\sqrt{ab}< \dfrac{a+b}{2}\)(2)

- 0<a<b, ta có: a<b<=> a+b<b+b

\(\Leftrightarrow\)\(\dfrac{a+b}{2}< \dfrac{b+b}{2}\)

\(\Leftrightarrow\dfrac{a+b}{2}< b\left(3\right)\)

Từ (1), (2), (3), ta có đpcm

NV
21 tháng 2 2020

Với \(m\ne-1\)

\(\Delta'=\left(m-1\right)^2-\left(m+1\right)\left(m-1\right)\left(m+5\right)>0\)

\(\Leftrightarrow\left(m-1\right)\left(m-1-m^2-6m-5\right)>0\)

\(\Leftrightarrow\left(m-1\right)\left(m^2+5m+6\right)< 0\Rightarrow\left[{}\begin{matrix}m< -3\\-2< m< 1\end{matrix}\right.\)

Đặt \(f\left(x\right)=\left(m+1\right)x^2-2\left(m-1\right)x+m^2+4m-5\)

Để pt có 2 nghiệm thỏa mãn \(x_2>x_1>2\)

\(\Leftrightarrow\left\{{}\begin{matrix}\frac{x_1+x_2}{2}-2>0\\a.f\left(2\right)>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\frac{m-1}{m+1}-2>0\\\left(m+1\right)\left[4\left(m+1\right)-4\left(m-1\right)+m^2+4m-5\right]>0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\frac{-m-3}{m+1}>0\\\left(m+1\right)\left(m^2+4m+3\right)>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-3< m< -1\\\left\{{}\begin{matrix}m>-3\\m\ne-1\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow-3< m< -1\)

Kết hợp điều kiện delta \(\Rightarrow-2< m< -1\)

7 tháng 4 2017

 

a)

Để \(5x^2-x+m>0\) thì:

\(\Delta< 0\Rightarrow1-20m< 0\Rightarrow m>\dfrac{1}{20}\)

b)

\(mx^2-10x-5< 0\)

Xét \(m=0\) ta có: \(-10x-5< 0\)\(\Leftrightarrow x>\dfrac{1}{2}\) (loại)
Xét \(m\ne0\). Theo định lý về dấu tam thức bậc hai:
\(mx^2-10x-5< 0\)\(\Leftrightarrow\left\{{}\begin{matrix}m< 0\\25+5m< 0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}m< 0\\m< -5\end{matrix}\right.\)\(\Leftrightarrow m< -5\).
Vậy với \(m< -5\) thì \(mx^2-10x-5< 0\).

NV
23 tháng 5 2019

\(\Delta'=\left(n-1\right)^2+3>0\) \(\forall n\)

Phương trình luôn có 2 nghiệm pb

Theo Viet ta có \(\left\{{}\begin{matrix}x_1+x_2=2\left(n-1\right)\\x_1x_2=-3\end{matrix}\right.\)

\(\left|x_1\right|+\left|x_2\right|=4\Leftrightarrow x_1^2+x_2^2+2\left|x_1x_2\right|=16\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2+2\left|x_1x_2\right|=16\)

\(\Leftrightarrow4\left(n-1\right)^2+6+6=16\)

\(\Leftrightarrow\left(n-1\right)^2=1\Rightarrow\left[{}\begin{matrix}n=0\\n=2\end{matrix}\right.\)