K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 5 2017

Áp dụng bất đẳng thức Cô-si cho hai số không âm, ta có :

\(\dfrac{a+b}{2}\ge\sqrt{ab}\) (1)

\(\dfrac{b+c}{2}\ge\sqrt{bc}\) (2)

\(\dfrac{c+a}{2}\ge\sqrt{ca}\) (3)

Cộng từng vế bất đẳng thức (1), (2), (3) ta được :

\(a+b+c\ge\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\)

Vậy bất đẳng thức đã được chứng minh

Mở rộng cho bốn số a, b, c, d không âm, ta có bất đẳng thức :

\(a+b+c+d\ge\sqrt{ab}+\sqrt{bc}+\sqrt{cd}+\sqrt{da}\)

Mở rộng cho năm số a, b, c, d, e không âm, ta có bất đẳng thức : \(a+b+c+d+e\ge\sqrt{ab}+\sqrt{bc}+\sqrt{cd}+\sqrt{de}+\sqrt{ea}\)

25 tháng 4 2017

áp dụng BĐT AM-GM với 2 số không âm

\(a+b\ge2\sqrt{ab}\)

\(b+c\ge2\sqrt{bc}\)

\(a+c\ge2\sqrt{ac}\)

cộng các vế của BĐT ta có

\(2\left(a+b+c\right)\ge2\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ac}\right)\)

chia cả hai vế của BĐT cho 2 ta có đpcm

30 tháng 7 2015

áp dụng bất đẳng thức cô- si, ta có:

\(a+b\ge2\sqrt{ab}\)  \(\left(1\right)\)

\(b+c\ge2\sqrt{bc}\)  \(\left(2\right)\)

\(c+a\ge2\sqrt{ca}\)  \(\left(3\right)\)

Cộng (1),(2),(3) vế theo vế, ta được:

\(2\left(a+b+c\right)\ge2\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\right)\)

\(\Leftrightarrow\) \(a+b+c\ge\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\)

Dấu " = " xảy ra <=> \(a=b=c\)

Đặt \(a=x^3,b=y^3,c=z^3\).Áp dụng bất đẳng thức Cô - si  với 2 số không âm , ta có 

\(\left(x^3+y^3\right)+\left(x^3+xyz\right)\ge2\sqrt{x^3y^3}+2\sqrt{xyz^4}=2\sqrt{xy}\left(xy+z^2\right)\)(1)

\(xy+z^2\ge2\sqrt{xyz^2}=2z\sqrt{xy}\)(2)

Từ (1)(2) \(\Rightarrow x^3+y^3+z^3+xyz\ge2\sqrt{xy}.2z\sqrt{xy}=4xyz\)

\(\Leftrightarrow x^3+y^3+z^3\ge3xyz\)

Vậy \(\frac{a+b+c}{3}\ge\sqrt[3]{abc}\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x=y\\xy=z^2\end{cases}\Leftrightarrow x=y=z\Leftrightarrow a=b=c}\)

P/s tham khảo nha

19 tháng 7 2017

có 1 cách mà xài SOS xấu lắm chơi ko :))

25 tháng 7 2017

tìm thấy rồi Tổng hợp kỹ thuật chứng minh bất đẳng thức-Tập 2: Luyện thi học sinh giỏi toán - Tổng hợp - Google Sách

18 tháng 7 2015

áp dụng BĐT cô-si ta có:

\(\frac{a+b}{2}=\frac{a}{2}+\frac{b}{2}\)\(\ge2\sqrt{\frac{a}{2}.\frac{b}{2}}=2\frac{\sqrt{a}\sqrt{b}}{\sqrt{4}}=2\frac{\sqrt{ab}}{2}=\sqrt{ab}\)

Vậy \(\frac{a+b}{2}\ge\sqrt{ab}\)

Dấu đẳng thức xảy ra khi a=b=0 hoặc a=b=1

 

18 tháng 7 2015

cái câu hỏi 2 tớ ko bik đúng ko 

27 tháng 5 2017

Căn bậc hai. Căn bậc ba

13 tháng 6 2017

Khai triển vế phải và rút gọn ,ta được kết quả vế phải bằng vế trái .

a )Nếu x ,y,z không âm thì x +y +z không âm .Suy ra

x3 +y3 +z3 -3xyz >=0.

Từ đó ,ta có \(\dfrac{x^3+y^3+z^3}{3}>=xyz.\)

b ) Đặt x \(\sqrt[3]{a}\) ,y =\(\sqrt[3]{b}\) ,z =\(\sqrt[3]{c}\)

Ta thấy a ,b ,c không âm ,nên x ,y ,z không âm .Dựa vào kết quả câu a ) ta có

\(\dfrac{\left(\sqrt[3]{a}\right)^3+\left(\sqrt[3]{b}\right)^3+\left(\sqrt[3]{c}\right)^3}{3}>=\sqrt[3]{a}.\sqrt[3]{b}.\sqrt[3]{c}\)

Suy ra \(\dfrac{a+b+c}{3}>=\sqrt[3]{abc}\)

14 tháng 8 2020

Ta có : \(\frac{a+b}{2}\ge\sqrt{ab}\) (1)

\(\Leftrightarrow a+b\ge2\sqrt{ab}\)

\(\Leftrightarrow\left(a+b\right)^2\ge4ab\)

\(\Leftrightarrow a^2+2ab+b^2-4ab\ge0\)

\(\Leftrightarrow a^2-2ab+b^2\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\ge0\)(2)

Bất đẳng thức 2 luôn đúng với \(\forall x\),vậy nên bất đẳng thức 1 cũng luôn đúng với mọi x .

Dấu "=" xảy ra khi và chỉ khi \(\left(a-b\right)^2=0\)

=> a-b=0 => a=b

Vậy BDT \(\frac{a+b}{2}\ge\sqrt{ab}\) xảy ra khi a = b

áp dụng ta có :

\(\frac{a+b}{2}\ge\sqrt{ab}\left(1\right)\)

\(\frac{b+c}{2}\ge\sqrt{bc}\left(2\right)\)

\(\frac{a+c}{2}\ge\sqrt{ca}\) (3)

từ 1,2,3 cộng từng ba bất đẳng thức ta được : \(\frac{a+b}{2}+\frac{b+c}{2}+\frac{c+a}{2}\ge\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\)

\(\Leftrightarrow\frac{a+b+b+c+c+a}{2}\ge\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\)

\(\Leftrightarrow\frac{2\left(a+b+c\right)}{a+b+c}\ge\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\)

\(\Leftrightarrow a+b+c\ge\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\)

Mở rộng kết quả cho 4 số a,b,c,d không âm ta có bất đẳng thức :

\(a+b+c+d\ge\sqrt{ab}+\sqrt{bc}+\sqrt{cd}+\sqrt{da}\)

Mở rộng kết quả cho 5 số a,b,c,d,e không âm ta có bất đẳng thức :

\(a+b+c+d+e\ge\sqrt{ab}+\sqrt{bc}+\sqrt{cd}+\sqrt{de}+\sqrt{ea}\)

Ta có: \(\frac{a+b}{2}\ge\sqrt{ab}\)

\(\Leftrightarrow a+b\ge2\sqrt{ab}\)

\(\Leftrightarrow a+b-2\sqrt{ab}\ge0\)

\(\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\)(luôn đúng \(\forall a,b\ge0\))

Ta có: \(\frac{a+b}{2}\ge\sqrt{ab}\forall a,b\ge0\)

\(\frac{b+c}{2}\ge\sqrt{bc}\forall b,c\ge0\)

\(\frac{c+a}{2}\ge\sqrt{ac}\forall a,c\ge0\)

Do đó: \(\frac{a+b+b+c+c+a}{2}\ge\sqrt{ab}+\sqrt{bc}+\sqrt{ac}\forall a,b,c\ge0\)

\(\Leftrightarrow\frac{2\left(a+b+c\right)}{2}\ge\sqrt{ab}+\sqrt{bc}+\sqrt{ac}\forall a,b,c\ge0\)

\(\Leftrightarrow a+b+c\ge\sqrt{ab}+\sqrt{bc}+\sqrt{ac}\forall a,b,c\ge0\)(đpcm)

23 tháng 4 2017

Nếu n= 2, tức có hai giá trị x1x2, và từ giả thiết ở trên, ta có:

{\displaystyle {\begin{aligned}x_{1}&\neq x_{2}\\[3pt]x_{1}-x_{2}&\neq 0\\[3pt]\left(x_{1}-x_{2}\right)^{2}&\geqslant 0\\[3pt]x_{1}^{2}-2x_{1}x_{2}+x_{2}^{2}&\geqslant 0\\[3pt]x_{1}^{2}+2x_{1}x_{2}+x_{2}^{2}&\geqslant 4x_{1}x_{2}\\[3pt]\left(x_{1}+x_{2}\right)^{2}&\geqslant 4x_{1}x_{2}\\[3pt]{\Bigl (}{\frac {x_{1}+x_{2}}{2}}{\Bigr )}^{2}&\geqslant x_{1}x_{2}\\[3pt]{\frac {x_{1}+x_{2}}{2}}&\geqslant {\sqrt {x_{1}x_{2}}}\end{aligned}}}

điều phải chứng minh - ở đây \(x_1=a;x_2=b\)

28 tháng 5 2017

\(\dfrac{a+b}{2}\ge\sqrt{ab}\)

\(\Leftrightarrow a+b\ge2\sqrt{ab}\)

\(\Leftrightarrow a-2\sqrt{ab}+b\ge0\)

\(\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2\)

-Dấu đẳng thức trên xảy ra khi: Trung bình cộng lớn hơn hoặc bằng trung bình nhân

16 tháng 8 2016

Chứng minh bằng biến đổi tương đương : 

\(\frac{a+b}{2}\ge\sqrt{ab}\) \(\Leftrightarrow a+b\ge2\sqrt{ab}\Leftrightarrow a+b-2\sqrt{ab}\ge0\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2\ge\) (luôn đúng)

Bđt cuối luôn đúng nên bđt ban đầu được chứng minh.

Dấu "=" xảy ra khi \(\sqrt{a}-\sqrt{b}=0\Leftrightarrow a=b\) (a,b không âm)