K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 7 2015

áp dụng BĐT cô-si ta có:

\(\frac{a+b}{2}=\frac{a}{2}+\frac{b}{2}\)\(\ge2\sqrt{\frac{a}{2}.\frac{b}{2}}=2\frac{\sqrt{a}\sqrt{b}}{\sqrt{4}}=2\frac{\sqrt{ab}}{2}=\sqrt{ab}\)

Vậy \(\frac{a+b}{2}\ge\sqrt{ab}\)

Dấu đẳng thức xảy ra khi a=b=0 hoặc a=b=1

 

18 tháng 7 2015

cái câu hỏi 2 tớ ko bik đúng ko 

23 tháng 4 2017

Nếu n= 2, tức có hai giá trị x1x2, và từ giả thiết ở trên, ta có:

{\displaystyle {\begin{aligned}x_{1}&\neq x_{2}\\[3pt]x_{1}-x_{2}&\neq 0\\[3pt]\left(x_{1}-x_{2}\right)^{2}&\geqslant 0\\[3pt]x_{1}^{2}-2x_{1}x_{2}+x_{2}^{2}&\geqslant 0\\[3pt]x_{1}^{2}+2x_{1}x_{2}+x_{2}^{2}&\geqslant 4x_{1}x_{2}\\[3pt]\left(x_{1}+x_{2}\right)^{2}&\geqslant 4x_{1}x_{2}\\[3pt]{\Bigl (}{\frac {x_{1}+x_{2}}{2}}{\Bigr )}^{2}&\geqslant x_{1}x_{2}\\[3pt]{\frac {x_{1}+x_{2}}{2}}&\geqslant {\sqrt {x_{1}x_{2}}}\end{aligned}}}

điều phải chứng minh - ở đây \(x_1=a;x_2=b\)

28 tháng 5 2017

\(\dfrac{a+b}{2}\ge\sqrt{ab}\)

\(\Leftrightarrow a+b\ge2\sqrt{ab}\)

\(\Leftrightarrow a-2\sqrt{ab}+b\ge0\)

\(\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2\)

-Dấu đẳng thức trên xảy ra khi: Trung bình cộng lớn hơn hoặc bằng trung bình nhân

9 tháng 3 2017

Vì a ≥ 0 nên √a xác định, b  ≥  0 nên  b  xác định

Ta có:  a - b 2 ≥  0 ⇔ a - 2 a b  + b  ≥  0

⇒ a + b  ≥  2 a b  ⇔  a + b 2 ≥ a b

Dấu đẳng thức xảy ra khi a = b.

16 tháng 8 2016

Chứng minh bằng biến đổi tương đương : 

\(\frac{a+b}{2}\ge\sqrt{ab}\) \(\Leftrightarrow a+b\ge2\sqrt{ab}\Leftrightarrow a+b-2\sqrt{ab}\ge0\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2\ge\) (luôn đúng)

Bđt cuối luôn đúng nên bđt ban đầu được chứng minh.

Dấu "=" xảy ra khi \(\sqrt{a}-\sqrt{b}=0\Leftrightarrow a=b\) (a,b không âm)

Đặt \(a=x^3,b=y^3,c=z^3\).Áp dụng bất đẳng thức Cô - si  với 2 số không âm , ta có 

\(\left(x^3+y^3\right)+\left(x^3+xyz\right)\ge2\sqrt{x^3y^3}+2\sqrt{xyz^4}=2\sqrt{xy}\left(xy+z^2\right)\)(1)

\(xy+z^2\ge2\sqrt{xyz^2}=2z\sqrt{xy}\)(2)

Từ (1)(2) \(\Rightarrow x^3+y^3+z^3+xyz\ge2\sqrt{xy}.2z\sqrt{xy}=4xyz\)

\(\Leftrightarrow x^3+y^3+z^3\ge3xyz\)

Vậy \(\frac{a+b+c}{3}\ge\sqrt[3]{abc}\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x=y\\xy=z^2\end{cases}\Leftrightarrow x=y=z\Leftrightarrow a=b=c}\)

P/s tham khảo nha

19 tháng 11 2018

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Vế trái bằng vế phải nên đẳng thức được chứng minh.

Nếu a ≥ 0, b  ≥  0, c  ≥  0 thì :

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

23 tháng 9 2021

\(\frac{a+b}{2}\ge\sqrt{ab}\Leftrightarrow\frac{a+b}{2}-\sqrt{ab}\ge0\)

\(\Leftrightarrow\frac{a-2\sqrt{ab}+b}{2}\ge0\Leftrightarrow\frac{\left(\sqrt{a}-\sqrt{b}\right)^2}{2}\ge0\)

Dấu ''='' xảy ra khi a = b 

27 tháng 5 2017

Áp dụng bất đẳng thức Cô-si cho hai số không âm, ta có :

\(\dfrac{a+b}{2}\ge\sqrt{ab}\) (1)

\(\dfrac{b+c}{2}\ge\sqrt{bc}\) (2)

\(\dfrac{c+a}{2}\ge\sqrt{ca}\) (3)

Cộng từng vế bất đẳng thức (1), (2), (3) ta được :

\(a+b+c\ge\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\)

Vậy bất đẳng thức đã được chứng minh

Mở rộng cho bốn số a, b, c, d không âm, ta có bất đẳng thức :

\(a+b+c+d\ge\sqrt{ab}+\sqrt{bc}+\sqrt{cd}+\sqrt{da}\)

Mở rộng cho năm số a, b, c, d, e không âm, ta có bất đẳng thức : \(a+b+c+d+e\ge\sqrt{ab}+\sqrt{bc}+\sqrt{cd}+\sqrt{de}+\sqrt{ea}\)

25 tháng 4 2017

áp dụng BĐT AM-GM với 2 số không âm

\(a+b\ge2\sqrt{ab}\)

\(b+c\ge2\sqrt{bc}\)

\(a+c\ge2\sqrt{ac}\)

cộng các vế của BĐT ta có

\(2\left(a+b+c\right)\ge2\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ac}\right)\)

chia cả hai vế của BĐT cho 2 ta có đpcm

22 tháng 3 2021

1) a2 - ab + b2 ≥ 0

<=> ( 4a2 - 4ab + b2 ) + 3b2 ≥ 0

<=> ( 2a - b )2 + 3b2 ≥ 0 ( đúng ∀ a,b )

Vậy bđt ban đầu được chứng minh

Đẳng thức xảy ra <=> a = b = 0

2) a2 - ab + b2 ≥ 1/4( a + b )2

<=> 4a2 - 4ab + 4b2 ≥ a2 + 2ab + b2

<=> 4a2 - 4ab + 4b - a2 - 2ab - b2 ≥ 0

<=> 3a2 - 6ab + 3b2 ≥ 0

<=> a2 - 2ab + b2 ≥ 0

<=> ( a - b )2 ≥ 0 ( đúng ∀ a,b )

Vậy bđt ban đầu được chứng minh

Đẳng thức xảy ra <=> a = b 

30 tháng 7 2015

áp dụng bất đẳng thức cô- si, ta có:

\(a+b\ge2\sqrt{ab}\)  \(\left(1\right)\)

\(b+c\ge2\sqrt{bc}\)  \(\left(2\right)\)

\(c+a\ge2\sqrt{ca}\)  \(\left(3\right)\)

Cộng (1),(2),(3) vế theo vế, ta được:

\(2\left(a+b+c\right)\ge2\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\right)\)

\(\Leftrightarrow\) \(a+b+c\ge\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\)

Dấu " = " xảy ra <=> \(a=b=c\)