K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 3 2016

90*

2 tháng 10 2015

vì đồ thị hàm số đi qua điểm \(A\left(-1;\frac{5}{2}\right)\) nên tọa độ của A thỏa mãn phương trình sau: \(\frac{a+b}{-2}=\frac{5}{2}\Rightarrow a+b=-5\)(*)

ta tính y' có:

\(y'=\frac{\left(2ax-b\right)\left(x-1\right)-\left(ax^2-bx\right)}{\left(x-1\right)^2}=\frac{2ax^2-2ax-bx+b-ax^2+bx}{\left(x-1\right)^2}=\frac{ax^2-2ax+b}{\left(x-1\right)^2}\)

vì hệ số góc của tiếp tuyến tại điểm O(0;0) bằng 3 nên \(y'\left(O\right)=\frac{b}{\left(0-1\right)^2}=-3\Rightarrow b=-3\)

thay b=-3 vào (*) ta tìm được a=-2

vậy a=-2;b=-3

1 tháng 4 2016

Cho hàm số y=x33m2x2+m. Tìm m

để đồ thị hàm số có cực đại, cực tiểu.

  1. m0
  2. m>0 (chọn câu này là thành câu trắc nghiệm hoàn chỉnh nhé hoc24)
  3. m<0
  4. m=0

Cho em hỏi em có được 3GP không ạ !

3 tháng 10 2015

vì (C) đi qua điểm A nên tọa độ điểm A thỏa mãn pt \(y=\frac{ax^2-bx}{x-1}\) ta có \(\frac{5}{2}=\frac{a+b}{-2}\Rightarrow a+b=-5\)

vì tiếp tuyến của đồ thị tại điểm O có hệ số góc =-3 suy ra y'(O)=-3

ta có \(y'=\frac{ax^2-2ax+b}{\left(x-1\right)^2}\) ta có y'(O)=b=-3 suy ra a=-2

vậy ta tìm đc a và b

Đề thi khảo sát đội tuyển Toán lớp tui nè! Triều giúp phần c bài 5 và cả bài 6 coi!Bài 1: Tìm GTNN của \(A=\left|2x-2\right|+\left|2x-2016\right|\)Bài 2: Cho \(\frac{a_1-1}{100}=\frac{a_2-2}{99}=...=\frac{a_{99}-99}{2}=\frac{a_{100}-100}{1}\)Biết \(a_1+a_2+...+a_{99}+a_{100}=10100\). Tìm \(a_1;a_2;...;a_{99};a_{100}\)Bài 3:Cho đa thức:\(M=2x^2+xy-4x-xy-y^2+2y+x+2016\)Biết \(x+y-2=0\). Tính M.Bài 4:Cho 2 đa thức, m là...
Đọc tiếp

Đề thi khảo sát đội tuyển Toán lớp tui nè! Triều giúp phần c bài 5 và cả bài 6 coi!

Bài 1: 

Tìm GTNN của \(A=\left|2x-2\right|+\left|2x-2016\right|\)

Bài 2: 

Cho \(\frac{a_1-1}{100}=\frac{a_2-2}{99}=...=\frac{a_{99}-99}{2}=\frac{a_{100}-100}{1}\)

Biết \(a_1+a_2+...+a_{99}+a_{100}=10100\). Tìm \(a_1;a_2;...;a_{99};a_{100}\)

Bài 3:

Cho đa thức:

\(M=2x^2+xy-4x-xy-y^2+2y+x+2016\)

Biết \(x+y-2=0\). Tính M.

Bài 4:

Cho 2 đa thức, m là hằng

\(q\left(x\right)=x^2+mx+m^2\)

\(p\left(x\right)=x^2+2\left(m+x\right)\)

Biết \(q\left(1\right)=p\left(-1\right)\). Tìm m.

Bài 5:

Cho tam giác nhọn ABC, đường cao AH. Phía ngoài tam giác ABC, vẽ 2 tam giác ABE và ACF vuông cân tại B và C. Trên tia đối tia AH, lấy I sao cho AI=BC.

CMR:

a)  \(\Delta ECB=\Delta BIA\)

b) EC=BI; EC vuông góc với BI

c) BF,AH,CE đồng quy

Bài 6: 

Chứng minh rằng tổng bình phương 5 số tự nhiên liên tiếp không là số chính phương.

3
22 tháng 2 2016

Dễ óa

22 tháng 2 2016

A H B C F E I

23 tháng 1 2016

Biến đổi :

\(4\sin x+3\cos x=A\left(\sin x+2\cos x\right)+B\left(\cos x-2\sin x\right)=\left(A-2B\right)\sin x+\left(2A+B\right)\cos x\)

Đồng nhất hệ số hai tử số, ta có :

\(\begin{cases}A-2B=4\\2A+B=3\end{cases}\)\(\Leftrightarrow\begin{cases}A=2\\B=-1\end{cases}\)

Khi đó \(f\left(x\right)=\frac{2\left(\left(\sin x+2\cos x\right)\right)-\left(\left(\sin x-2\cos x\right)\right)}{\left(\sin x+2\cos x\right)}=2-\frac{\cos x-2\sin x}{\sin x+2\cos x}\)

Do đó, 

\(F\left(x\right)=\int f\left(x\right)dx=\int\left(2-\frac{\cos x-2\sin x}{\sin x+2\cos x}\right)dx=2\int dx-\int\frac{\left(\cos x-2\sin x\right)dx}{\sin x+2\cos x}=2x-\ln\left|\sin x+2\cos x\right|+C\)

9 tháng 10 2015

\(\left(C_1\right)\) có dạng \(y=x^3-3x\)

Gọi điểm A(a;2) là điểm kẻ đc 3 tiếp tuyến đến C do đề bài yêu cầu tìm điểm thuộc đường thẳng y=2

ta tính \(y'=3x^2-3\)

gọi \(B\left(x_0;y_0\right)\) là tọa độ tiếp điểm 

phương trình tiếp tuyến tại điểm B có dạng 

\(y=y'\left(x_0\right)\left(x-x_0\right)+y_0\)

suy ra ta có \(y=\left(3x^2_0-3\right)\left(x-x_0\right)+x_0^3-3x_0\)

do tiếp tuyến đi qua điểm A suy ra tọa độ của A thỏa mãn pt tiếp tuyến ta có

\(2=\left(3x^2_0-3\right)\left(a-x_0\right)+x_0^3-3x_0\Leftrightarrow-\left(3x^2_0-3\right)\left(a-x_0\right)+x_0^3-3x_0-2=0\Leftrightarrow-3\left(x_0-1\right)\left(1+x_0\right)\left(a-x_0\right)+\left(1+x_0\right)^2\left(x_0-2\right)=0\)(*)

từ pt * suy ra đc 1 nghiệm \(x_0+1=0\Rightarrow x_0=-1\) hoặc\(-3\left(x_0-1\right)\left(a-x_0\right)+\left(1+x_0\right)\left(x_0-2\right)=0\)(**)

để qua A kẻ đc 3 tiếp tuyến thì pt (*) có 3 nghiệm phân biệt

suy ra pt (**) có 2 nghiệm phân biệt khác -1  

từ đó ta suy ra đc a để pt có 2 nghiệm phân biệt khác -1

suy ra đc tập hợ điểm A để thỏa mãn đk bài ra

19 tháng 4 2016

Phương trình tiếp tuyến tại M0 có dạng: y = k(x – x0) + y0  (*)

Với x0 là hoành độ tiếp điểm;

Với y0 = f(x0) là tung độ tiếp điểm;

Với k = y’(x0) = f’(x0) là hệ số góc của tiếp tuyến.

Để viết được phương trình tiếp tuyến ta phải xác định được x0; y0 và k