K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 2 2016

giả sử :  \(\frac{mx+m}{\left(m+1\right)x-m+2}>0\)\(,\text{∀}x\in\left[0;2\right]\)

\(\Rightarrow\frac{m.0+m}{\left(m+1\right).0-m+2}>0\)    \(\Rightarrow\frac{m}{2-m}>0\)

                               \(\Rightarrow0\)\(<\)\(m<\)\(2\)

ngược lại \(0<\)\(m<2\) thì:

\(mx+m>0,\text{∀}x\in\left[0;2\right]\)

\(\left(m+1\right)x\ge0>m-2,\)\(\text{∀}x\in\left[0;2\right]\)

\(\Rightarrow\left(m+1\right)x-m+2>0,\text{∀}x\in\left[0;2\right]\)

\(\Rightarrow\frac{mx+m}{\left(m+1\right)x-m+2}>0,\text{∀}x\in\left[0;2\right]\)

vậy:  \(0\)\(<\)\(m<\)\(2\) là kết quả cần tìm

27 tháng 2 2016

ta có : \(S=m,P=m+7\)

do đó: \(x^1_2+x^2_2=10\)  \(\Leftrightarrow S^2-2P=10\)

                              \(\Leftrightarrow m^2-2m-14=10\)

                              \(\Leftrightarrow m^2-2m-24=0\)

                              \(\Leftrightarrow\begin{cases}m=-4\left(\Rightarrow\Delta=m^2-4m-28>0\right)\\m=6\left(\Rightarrow\Delta=m^2-4m-28<0\right)\end{cases}\)

                              \(\Rightarrow m=-4\) là giá trị cần tìm

27 tháng 2 2016

ta có : S=m,P=m+7S=m,P=m+7

do đó: x12+x22=10x21+x22=10  ⇔S2−2P=10⇔S2−2P=10

                              ⇔m2−2m−14=10⇔m2−2m−14=10

                              ⇔m2−2m−24=0⇔m2−2m−24=0

                              ⇔{m=−4(⇒Δ=m2−4m−28>0)m=6(⇒Δ=m2−4m−28<0)⇔{m=−4(⇒Δ=m2−4m−28>0)m=6(⇒Δ=m2−4m−28<0)

                              ⇒m=−4⇒m=−4 là giá trị cần tìm

27 tháng 2 2016

\(\left(1\right)\Rightarrow-8\)\(<\)\(x<1\)

giải \(\left(2\right)\):

\(\left(2\right)\Rightarrow m^2x>3m+4\)

\(m=0\):         \(\left(2\right)\) vô nghiệm  \(\rightarrow\) hệ đã cho vô nghiệm

\(m\ne0\):        \(\left(2\right)\Rightarrow\) \(x>\frac{3m+4}{m^2}\)

trong trường hợp này hệ vô nghiệm \(\Rightarrow\)

\(\Leftrightarrow\)\(\begin{cases}m\ne0\\\frac{3m-4}{m^2}\ge1\end{cases}\)\(\Leftrightarrow\)\(\begin{cases}m^2-3m-4\le0\\m\ne0\end{cases}\)\(\Leftrightarrow\)\(\begin{cases}-1\le m\le4\\m\ne0\end{cases}\)

vậy \(-1\le m\le4\) là giá trị cần tìm

9 tháng 10 2015

\(\left(C_1\right)\) có dạng \(y=x^3-3x\)

Gọi điểm A(a;2) là điểm kẻ đc 3 tiếp tuyến đến C do đề bài yêu cầu tìm điểm thuộc đường thẳng y=2

ta tính \(y'=3x^2-3\)

gọi \(B\left(x_0;y_0\right)\) là tọa độ tiếp điểm 

phương trình tiếp tuyến tại điểm B có dạng 

\(y=y'\left(x_0\right)\left(x-x_0\right)+y_0\)

suy ra ta có \(y=\left(3x^2_0-3\right)\left(x-x_0\right)+x_0^3-3x_0\)

do tiếp tuyến đi qua điểm A suy ra tọa độ của A thỏa mãn pt tiếp tuyến ta có

\(2=\left(3x^2_0-3\right)\left(a-x_0\right)+x_0^3-3x_0\Leftrightarrow-\left(3x^2_0-3\right)\left(a-x_0\right)+x_0^3-3x_0-2=0\Leftrightarrow-3\left(x_0-1\right)\left(1+x_0\right)\left(a-x_0\right)+\left(1+x_0\right)^2\left(x_0-2\right)=0\)(*)

từ pt * suy ra đc 1 nghiệm \(x_0+1=0\Rightarrow x_0=-1\) hoặc\(-3\left(x_0-1\right)\left(a-x_0\right)+\left(1+x_0\right)\left(x_0-2\right)=0\)(**)

để qua A kẻ đc 3 tiếp tuyến thì pt (*) có 3 nghiệm phân biệt

suy ra pt (**) có 2 nghiệm phân biệt khác -1  

từ đó ta suy ra đc a để pt có 2 nghiệm phân biệt khác -1

suy ra đc tập hợ điểm A để thỏa mãn đk bài ra

Đề thi khảo sát đội tuyển Toán lớp tui nè! Triều giúp phần c bài 5 và cả bài 6 coi!Bài 1: Tìm GTNN của \(A=\left|2x-2\right|+\left|2x-2016\right|\)Bài 2: Cho \(\frac{a_1-1}{100}=\frac{a_2-2}{99}=...=\frac{a_{99}-99}{2}=\frac{a_{100}-100}{1}\)Biết \(a_1+a_2+...+a_{99}+a_{100}=10100\). Tìm \(a_1;a_2;...;a_{99};a_{100}\)Bài 3:Cho đa thức:\(M=2x^2+xy-4x-xy-y^2+2y+x+2016\)Biết \(x+y-2=0\). Tính M.Bài 4:Cho 2 đa thức, m là...
Đọc tiếp

Đề thi khảo sát đội tuyển Toán lớp tui nè! Triều giúp phần c bài 5 và cả bài 6 coi!

Bài 1: 

Tìm GTNN của \(A=\left|2x-2\right|+\left|2x-2016\right|\)

Bài 2: 

Cho \(\frac{a_1-1}{100}=\frac{a_2-2}{99}=...=\frac{a_{99}-99}{2}=\frac{a_{100}-100}{1}\)

Biết \(a_1+a_2+...+a_{99}+a_{100}=10100\). Tìm \(a_1;a_2;...;a_{99};a_{100}\)

Bài 3:

Cho đa thức:

\(M=2x^2+xy-4x-xy-y^2+2y+x+2016\)

Biết \(x+y-2=0\). Tính M.

Bài 4:

Cho 2 đa thức, m là hằng

\(q\left(x\right)=x^2+mx+m^2\)

\(p\left(x\right)=x^2+2\left(m+x\right)\)

Biết \(q\left(1\right)=p\left(-1\right)\). Tìm m.

Bài 5:

Cho tam giác nhọn ABC, đường cao AH. Phía ngoài tam giác ABC, vẽ 2 tam giác ABE và ACF vuông cân tại B và C. Trên tia đối tia AH, lấy I sao cho AI=BC.

CMR:

a)  \(\Delta ECB=\Delta BIA\)

b) EC=BI; EC vuông góc với BI

c) BF,AH,CE đồng quy

Bài 6: 

Chứng minh rằng tổng bình phương 5 số tự nhiên liên tiếp không là số chính phương.

3
22 tháng 2 2016

Dễ óa

22 tháng 2 2016

A H B C F E I

27 tháng 2 2016

với \(m=0\) : PT \(\left(1\right)\Leftrightarrow\)     \(-2x+1=0\)    \(\Leftrightarrow x=\frac{1}{2}\in\left(0;1\right)\)

với \(m\ne0\) : PT \(\left(1\right)\) có đúng 1 nghiệm \(\in\left(0;1\right)\)

                           \(\Leftrightarrow f\left(0\right).f\left(1\right)<0\)

( để ý: \(\Delta'=\left(m+1\right)^2-m=\)\(m^2+m+1>0,\text{∀}x\in R\))

                           \(\Leftrightarrow m-2\left(m+1\right)+1<0\) \(\Leftrightarrow m>-1\)

vậy \(m>-2\) là kết quả cần tìm

27 tháng 2 2016

với m=0m=0 : PT (1)⇔(1)⇔     −2x+1=0−2x+1=0    ⇔x=12∈(0;1)⇔x=12∈(0;1)

với m≠0m≠0 : PT (1)(1) có đúng 1 nghiệm ∈(0;1)∈(0;1)

                           ⇔f(0).f(1)<0⇔f(0).f(1)<0

( để ý: Δ′=(m+1)2−m=Δ′=(m+1)2−m=m2+m+1>0,∀x∈Rm2+m+1>0,∀x∈R)

                           ⇔m−2(m+1)+1<0⇔m−2(m+1)+1<0 ⇔m>−1⇔m>−1

vậy m>−2m>−2 là kết quả cần tìm

31 tháng 3 2016

Câu 1 : 

Đk: \(x\ge1\) 

\(\sqrt{x-1}+\sqrt{2x-1}=5\\ \Leftrightarrow x-1+2\sqrt{\left(x-1\right)\left(2x-1\right)}+2x-1=25\\ \Leftrightarrow2\sqrt{2x^2-3x+1}=27-3x\\ \)

\(\Leftrightarrow\begin{cases}27-3x\ge0\\4\left(2x^2-3x+1\right)=9x^2-162x+729\end{cases}\) \(\Leftrightarrow\begin{cases}x\le9\\x^2-150x+725=0\end{cases}\)

\(\Leftrightarrow\begin{cases}x\le9\\x=145hoặcx=5\end{cases}\)

với x= 5 thoản mãn điều kiện, x=145 loại

Vậy \(S=\left\{5\right\}\)

29 tháng 4 2016

1) ( 2m - 1 )x² - 2mx + 1 = 0 
Ta có : 
b² - 4ac 
= (-2m)² - 4(2m - 1) 
= 4m² - 8m + 4 
= ( 2m - 2 )² 
Như vậy : (2m - 2)² ≥ 0 , ∀m ∈ IR 

Gọi x1 , x2 là 2 nghiệm của phương trình 
Áp dụng hệ thức Vi-ét 
{ x1 + x2 = 2m / (2m - 1) 
{ x1x2 = 1 / (2m - 1) 

Nếu nằm trong khoảng thì : 
-1 < x1 < x2 < 0 
Xét đoạn -1 < x1 < x2 
<=> 0 < x1 + 1 < x2 + 1 

Ta lập hệ pt sau 
{ (x1 + 1 )(x2 + 1) > 0 
{ x1 + 1 + x2 + 1 > 0 

{ x1 + x1x2 + x2 + 1 > 0 
{ x1 + x2 + 2 > 0 
Sử dụng Vi-ét 
=> 1/(2m - 1) + 2m/(2m - 1) + 1 > 0 
=> 2m / (2m - 1) + 2 > 0 

<=> ( 1 + 2m + 2m - 1 ) / (2m - 1) > 0 
<=> [2m + 2(2m - 1)] / (2m - 1) > 0 

<=> 4m / ( 2m - 1 ) > 0 
<=> ( 2m + 4m - 2 ) / ( 2m - 1 ) > 0 

<=> 4m / (2m - 1) > 0 
<=> ( 6m - 2 ) / ( 2m - 1 ) > 0 

Vẽ bảng xét dấu 
<=> m < 0 V m > 1/2 (1) 
<=> m < 1/2 V m > 3 (2) 

Xét đoạn x1 < x2 < 0 
{ x1 + x2 < 0 
{ x1x2 > 0 

{ 2m / (2m - 1) < 0 
{ 1 / (2m - 1) > 0 
Xét bảng xét dấu 
<=> 0 < m < 1/2 (3) 
<=> m > 1/2 (4) 

=> m không thuộc khoảng nào cả 
=> Vô nghiệm 

2) x² + 2(m + 3)x + 4m + 12 = 0 
Ta có 
b² - 4ac 
= [ 2(m + 3) ]² - 4(4m + 12) 
= 4(m + 3)² - 16m - 48 
= 4(m² + 6m + 9) - 16m - 48 
= 4m² + 24m + 36 - 16m - 48 
= 4m² + 8m - 12 
Để pt có nghiệm m < -1 V m > 3 

Gọi x1 , x2 là 2 nghiệm của pt 
Áp dụng hệ thức Vi-ét 
{ x1 + x2 = -2(m + 3) 
{ x1x2 = 4m + 12 

Ta đã có -1 < x1 < x2 
<=> 0 < x1 + 1 < x2 + 1 

Ta lập hệ bất pt sau : 
{ ( x1 + 1 )(x2 + 1 ) > 0 
{ x1 + 1 + x2 + 1 > 0 

{ x1 + x1x2 + x2 + 1 > 0 
{ x1 + x2 + 2 > 0 

{ -2(m + 3) + 4m + 12 + 1 > 0 
{ 4m + 12 + 2 > 0 

{ -2m - 6 + 4m + 12 + 1 > 0 
{ 4m + 14 > 0 

{ 2m > -7 
{ 4m > -14 

{ m > -7/2 
{ m > -7/2 
Hợp nghiệm lại 
m ∈ ( -7/2 ; -1 ) ∪ ( -3 ; +∞ ) 

3) 2x² + (2m - 1)x + m - 1 = 0 
Ta có 
b² - 4ac = (2m - 1)² - 4.2.(m - 1) 
= 4m² - 4m + 1 - 8m + 8 
= 4m² - 12m + 9 
= ( 2m - 3 )² 
Mà ( 2m - 3 )² ≥ 0 , ∀m ∈ IR 

Gọi x1 và x2 là 2 nghiệm của pt 

x1 = [-(2m - 1) - 2m +3 ]/ 2 = ( -4m + 2 ) /2 = -2m + 1 
x2 = [-(2m - 1) +2m - 3 ]/ 2 = -2/2 = -1 

Thế 
3x1 - 4x2 = 11 
3( -2m + 1 ) - 4.(-1) = 11 
<=> -6m + 3 + 4 = 11 
<=> -2m = 4 
<=> m = -2 

4) x² - 2(m - 3)x - 2(m - 1) = 0 
Ta có 
[ 2(m - 3)]² - 4.(-2)(m - 1) 
= 4(m - 3)² + 8(m - 1) 
= 4(m² - 6m + 9) + 8m - 8 
= 4m² - 24m + 36 + 8m - 8 
= 4m² - 16m + 28 
Xét tiếp 
(-16)² - 4.4.28 = -192 < 0 mà 4m² là số dương nên 4m² - 16m + 28 > 0 , ∀m ∈ IR 

Áp dụng hệ thức Vi-ét 
{ x1 + x2 = 2(m - 3) 
{ x1x2 = -2(m - 1) 

<=> ( x1 + x2 )² = 4(m - 3)² 
<=> x1² + 2x1x2 + x2² = 4(m² - 6m + 9) 
<=> x1² + x2² - (m - 1) = 4m² - 24m + 36 
<=> x1² + x2² = 4m² - 24m + 36 + m - 1 
<=> x1² + x2² = 4m² - 23m + 35 
Để x1² + x2² Min thì 4m² - 23m + 35 phải Min 
<=> 4m² - 23/4.2.2m + 529/16 + 31/16 
<=> ( 2m - 23/4 )² + 31/16 
Mà ( 2m - 23/4 )² ≥ 0 , ∀m ∈ IR 
<=> ( 2m - 23/4 )² + 31/16 ≥ 31/16 > 0 
Vậy đạt Min khi đó "=" xảy ra : 2m - 23/4 = 0 
<=> m = 23/8 

Vậy m = 23/8 thì x1² + x2² đạt Min 
=> Amin = x1² + x2² = 4(23/8)² - 23(23/8) + 35 = 31/161) ( 2m - 1 )x² - 2mx + 1 = 0 
Ta có : 
b² - 4ac 
= (-2m)² - 4(2m - 1) 
= 4m² - 8m + 4 
= ( 2m - 2 )² 
Như vậy : (2m - 2)² ≥ 0 , ∀m ∈ IR 

Gọi x1 , x2 là 2 nghiệm của phương trình 
Áp dụng hệ thức Vi-ét 
{ x1 + x2 = 2m / (2m - 1) 
{ x1x2 = 1 / (2m - 1) 

Nếu nằm trong khoảng thì : 
-1 < x1 < x2 < 0 
Xét đoạn -1 < x1 < x2 
<=> 0 < x1 + 1 < x2 + 1 

Ta lập hệ pt sau 
{ (x1 + 1 )(x2 + 1) > 0 
{ x1 + 1 + x2 + 1 > 0 

{ x1 + x1x2 + x2 + 1 > 0 
{ x1 + x2 + 2 > 0 
Sử dụng Vi-ét 
=> 1/(2m - 1) + 2m/(2m - 1) + 1 > 0 
=> 2m / (2m - 1) + 2 > 0 

<=> ( 1 + 2m + 2m - 1 ) / (2m - 1) > 0 
<=> [2m + 2(2m - 1)] / (2m - 1) > 0 

<=> 4m / ( 2m - 1 ) > 0 
<=> ( 2m + 4m - 2 ) / ( 2m - 1 ) > 0 

<=> 4m / (2m - 1) > 0 
<=> ( 6m - 2 ) / ( 2m - 1 ) > 0 

Vẽ bảng xét dấu 
<=> m < 0 V m > 1/2 (1) 
<=> m < 1/2 V m > 3 (2) 

Xét đoạn x1 < x2 < 0 
{ x1 + x2 < 0 
{ x1x2 > 0 

{ 2m / (2m - 1) < 0 
{ 1 / (2m - 1) > 0 
Xét bảng xét dấu 
<=> 0 < m < 1/2 (3) 
<=> m > 1/2 (4) 

=> m không thuộc khoảng nào cả 
=> Vô nghiệm 

2) x² + 2(m + 3)x + 4m + 12 = 0 
Ta có 
b² - 4ac 
= [ 2(m + 3) ]² - 4(4m + 12) 
= 4(m + 3)² - 16m - 48 
= 4(m² + 6m + 9) - 16m - 48 
= 4m² + 24m + 36 - 16m - 48 
= 4m² + 8m - 12 
Để pt có nghiệm m < -1 V m > 3 

Gọi x1 , x2 là 2 nghiệm của pt 
Áp dụng hệ thức Vi-ét 
{ x1 + x2 = -2(m + 3) 
{ x1x2 = 4m + 12 

Ta đã có -1 < x1 < x2 
<=> 0 < x1 + 1 < x2 + 1 

Ta lập hệ bất pt sau : 
{ ( x1 + 1 )(x2 + 1 ) > 0 
{ x1 + 1 + x2 + 1 > 0 

{ x1 + x1x2 + x2 + 1 > 0 
{ x1 + x2 + 2 > 0 

{ -2(m + 3) + 4m + 12 + 1 > 0 
{ 4m + 12 + 2 > 0 

{ -2m - 6 + 4m + 12 + 1 > 0 
{ 4m + 14 > 0 

{ 2m > -7 
{ 4m > -14 

{ m > -7/2 
{ m > -7/2 
Hợp nghiệm lại 
m ∈ ( -7/2 ; -1 ) ∪ ( -3 ; +∞ ) 

3) 2x² + (2m - 1)x + m - 1 = 0 
Ta có 
b² - 4ac = (2m - 1)² - 4.2.(m - 1) 
= 4m² - 4m + 1 - 8m + 8 
= 4m² - 12m + 9 
= ( 2m - 3 )² 
Mà ( 2m - 3 )² ≥ 0 , ∀m ∈ IR 

Gọi x1 và x2 là 2 nghiệm của pt 

x1 = [-(2m - 1) - 2m +3 ]/ 2 = ( -4m + 2 ) /2 = -2m + 1 
x2 = [-(2m - 1) +2m - 3 ]/ 2 = -2/2 = -1 

Thế 
3x1 - 4x2 = 11 
3( -2m + 1 ) - 4.(-1) = 11 
<=> -6m + 3 + 4 = 11 
<=> -2m = 4 
<=> m = -2 

4) x² - 2(m - 3)x - 2(m - 1) = 0 
Ta có 
[ 2(m - 3)]² - 4.(-2)(m - 1) 
= 4(m - 3)² + 8(m - 1) 
= 4(m² - 6m + 9) + 8m - 8 
= 4m² - 24m + 36 + 8m - 8 
= 4m² - 16m + 28 
Xét tiếp 
(-16)² - 4.4.28 = -192 < 0 mà 4m² là số dương nên 4m² - 16m + 28 > 0 , ∀m ∈ IR 

Áp dụng hệ thức Vi-ét 
{ x1 + x2 = 2(m - 3) 
{ x1x2 = -2(m - 1) 

<=> ( x1 + x2 )² = 4(m - 3)² 
<=> x1² + 2x1x2 + x2² = 4(m² - 6m + 9) 
<=> x1² + x2² - (m - 1) = 4m² - 24m + 36 
<=> x1² + x2² = 4m² - 24m + 36 + m - 1 
<=> x1² + x2² = 4m² - 23m + 35 
Để x1² + x2² Min thì 4m² - 23m + 35 phải Min 
<=> 4m² - 23/4.2.2m + 529/16 + 31/16 
<=> ( 2m - 23/4 )² + 31/16 
Mà ( 2m - 23/4 )² ≥ 0 , ∀m ∈ IR 
<=> ( 2m - 23/4 )² + 31/16 ≥ 31/16 > 0 
Vậy đạt Min khi đó "=" xảy ra : 2m - 23/4 = 0 
<=> m = 23/8 

Vậy m = 23/8 thì x1² + x2² đạt Min 
=> Amin = x1² + x2² = 4(23/8)² - 23(23/8) + 35 = 31/161) ( 2m - 1 )x² - 2mx + 1 = 0 
Ta có : 
b² - 4ac 
= (-2m)² - 4(2m - 1) 
= 4m² - 8m + 4 
= ( 2m - 2 )² 
Như vậy : (2m - 2)² ≥ 0 , ∀m ∈ IR 

Gọi x1 , x2 là 2 nghiệm của phương trình 
Áp dụng hệ thức Vi-ét 
{ x1 + x2 = 2m / (2m - 1) 
{ x1x2 = 1 / (2m - 1) 

Nếu nằm trong khoảng thì : 
-1 < x1 < x2 < 0 
Xét đoạn -1 < x1 < x2 
<=> 0 < x1 + 1 < x2 + 1 

Ta lập hệ pt sau 
{ (x1 + 1 )(x2 + 1) > 0 
{ x1 + 1 + x2 + 1 > 0 

{ x1 + x1x2 + x2 + 1 > 0 
{ x1 + x2 + 2 > 0 
Sử dụng Vi-ét 
=> 1/(2m - 1) + 2m/(2m - 1) + 1 > 0 
=> 2m / (2m - 1) + 2 > 0 

<=> ( 1 + 2m + 2m - 1 ) / (2m - 1) > 0 
<=> [2m + 2(2m - 1)] / (2m - 1) > 0 

<=> 4m / ( 2m - 1 ) > 0 
<=> ( 2m + 4m - 2 ) / ( 2m - 1 ) > 0 

<=> 4m / (2m - 1) > 0 
<=> ( 6m - 2 ) / ( 2m - 1 ) > 0 

Vẽ bảng xét dấu 
<=> m < 0 V m > 1/2 (1) 
<=> m < 1/2 V m > 3 (2) 

Xét đoạn x1 < x2 < 0 
{ x1 + x2 < 0 
{ x1x2 > 0 

{ 2m / (2m - 1) < 0 
{ 1 / (2m - 1) > 0 
Xét bảng xét dấu 
<=> 0 < m < 1/2 (3) 
<=> m > 1/2 (4) 

=> m không thuộc khoảng nào cả 
=> Vô nghiệm 

2) x² + 2(m + 3)x + 4m + 12 = 0 
Ta có 
b² - 4ac 
= [ 2(m + 3) ]² - 4(4m + 12) 
= 4(m + 3)² - 16m - 48 
= 4(m² + 6m + 9) - 16m - 48 
= 4m² + 24m + 36 - 16m - 48 
= 4m² + 8m - 12 
Để pt có nghiệm m < -1 V m > 3 

Gọi x1 , x2 là 2 nghiệm của pt 
Áp dụng hệ thức Vi-ét 
{ x1 + x2 = -2(m + 3) 
{ x1x2 = 4m + 12 

Ta đã có -1 < x1 < x2 
<=> 0 < x1 + 1 < x2 + 1 

Ta lập hệ bất pt sau : 
{ ( x1 + 1 )(x2 + 1 ) > 0 
{ x1 + 1 + x2 + 1 > 0 

{ x1 + x1x2 + x2 + 1 > 0 
{ x1 + x2 + 2 > 0 

{ -2(m + 3) + 4m + 12 + 1 > 0 
{ 4m + 12 + 2 > 0 

{ -2m - 6 + 4m + 12 + 1 > 0 
{ 4m + 14 > 0 

{ 2m > -7 
{ 4m > -14 

{ m > -7/2 
{ m > -7/2 
Hợp nghiệm lại 
m ∈ ( -7/2 ; -1 ) ∪ ( -3 ; +∞ ) 

3) 2x² + (2m - 1)x + m - 1 = 0 
Ta có 
b² - 4ac = (2m - 1)² - 4.2.(m - 1) 
= 4m² - 4m + 1 - 8m + 8 
= 4m² - 12m + 9 
= ( 2m - 3 )² 
Mà ( 2m - 3 )² ≥ 0 , ∀m ∈ IR 

Gọi x1 và x2 là 2 nghiệm của pt 

x1 = [-(2m - 1) - 2m +3 ]/ 2 = ( -4m + 2 ) /2 = -2m + 1 
x2 = [-(2m - 1) +2m - 3 ]/ 2 = -2/2 = -1 

Thế 
3x1 - 4x2 = 11 
3( -2m + 1 ) - 4.(-1) = 11 
<=> -6m + 3 + 4 = 11 
<=> -2m = 4 
<=> m = -2 

4) x² - 2(m - 3)x - 2(m - 1) = 0 
Ta có 
[ 2(m - 3)]² - 4.(-2)(m - 1) 
= 4(m - 3)² + 8(m - 1) 
= 4(m² - 6m + 9) + 8m - 8 
= 4m² - 24m + 36 + 8m - 8 
= 4m² - 16m + 28 
Xét tiếp 
(-16)² - 4.4.28 = -192 < 0 mà 4m² là số dương nên 4m² - 16m + 28 > 0 , ∀m ∈ IR 

Áp dụng hệ thức Vi-ét 
{ x1 + x2 = 2(m - 3) 
{ x1x2 = -2(m - 1) 

<=> ( x1 + x2 )² = 4(m - 3)² 
<=> x1² + 2x1x2 + x2² = 4(m² - 6m + 9) 
<=> x1² + x2² - (m - 1) = 4m² - 24m + 36 
<=> x1² + x2² = 4m² - 24m + 36 + m - 1 
<=> x1² + x2² = 4m² - 23m + 35 
Để x1² + x2² Min thì 4m² - 23m + 35 phải Min 
<=> 4m² - 23/4.2.2m + 529/16 + 31/16 
<=> ( 2m - 23/4 )² + 31/16 
Mà ( 2m - 23/4 )² ≥ 0 , ∀m ∈ IR 
<=> ( 2m - 23/4 )² + 31/16 ≥ 31/16 > 0 
Vậy đạt Min khi đó "=" xảy ra : 2m - 23/4 = 0 
<=> m = 23/8 

Vậy m = 23/8 thì x1² + x2² đạt Min 
=> Amin = x1² + x2² = 4(23/8)² - 23(23/8) + 35 = 31/161) ( 2m - 1 )x² - 2mx + 1 = 0 
Ta có : 
b² - 4ac 
= (-2m)² - 4(2m - 1) 
= 4m² - 8m + 4 
= ( 2m - 2 )² 
Như vậy : (2m - 2)² ≥ 0 , ∀m ∈ IR 

Gọi x1 , x2 là 2 nghiệm của phương trình 
Áp dụng hệ thức Vi-ét 
{ x1 + x2 = 2m / (2m - 1) 
{ x1x2 = 1 / (2m - 1) 

Nếu nằm trong khoảng thì : 
-1 < x1 < x2 < 0 
Xét đoạn -1 < x1 < x2 
<=> 0 < x1 + 1 < x2 + 1 

Ta lập hệ pt sau 
{ (x1 + 1 )(x2 + 1) > 0 
{ x1 + 1 + x2 + 1 > 0 

{ x1 + x1x2 + x2 + 1 > 0 
{ x1 + x2 + 2 > 0 
Sử dụng Vi-ét 
=> 1/(2m - 1) + 2m/(2m - 1) + 1 > 0 
=> 2m / (2m - 1) + 2 > 0 

<=> ( 1 + 2m + 2m - 1 ) / (2m - 1) > 0 
<=> [2m + 2(2m - 1)] / (2m - 1) > 0 

<=> 4m / ( 2m - 1 ) > 0 
<=> ( 2m + 4m - 2 ) / ( 2m - 1 ) > 0 

<=> 4m / (2m - 1) > 0 
<=> ( 6m - 2 ) / ( 2m - 1 ) > 0 

Vẽ bảng xét dấu 
<=> m < 0 V m > 1/2 (1) 
<=> m < 1/2 V m > 3 (2) 

Xét đoạn x1 < x2 < 0 
{ x1 + x2 < 0 
{ x1x2 > 0 

{ 2m / (2m - 1) < 0 
{ 1 / (2m - 1) > 0 
Xét bảng xét dấu 
<=> 0 < m < 1/2 (3) 
<=> m > 1/2 (4) 

=> m không thuộc khoảng nào cả 
=> Vô nghiệm 

2) x² + 2(m + 3)x + 4m + 12 = 0 
Ta có 
b² - 4ac 
= [ 2(m + 3) ]² - 4(4m + 12) 
= 4(m + 3)² - 16m - 48 
= 4(m² + 6m + 9) - 16m - 48 
= 4m² + 24m + 36 - 16m - 48 
= 4m² + 8m - 12 
Để pt có nghiệm m < -1 V m > 3 

Gọi x1 , x2 là 2 nghiệm của pt 
Áp dụng hệ thức Vi-ét 
{ x1 + x2 = -2(m + 3) 
{ x1x2 = 4m + 12 

Ta đã có -1 < x1 < x2 
<=> 0 < x1 + 1 < x2 + 1 

Ta lập hệ bất pt sau : 
{ ( x1 + 1 )(x2 + 1 ) > 0 
{ x1 + 1 + x2 + 1 > 0 

{ x1 + x1x2 + x2 + 1 > 0 
{ x1 + x2 + 2 > 0 

{ -2(m + 3) + 4m + 12 + 1 > 0 
{ 4m + 12 + 2 > 0 

{ -2m - 6 + 4m + 12 + 1 > 0 
{ 4m + 14 > 0 

{ 2m > -7 
{ 4m > -14 

{ m > -7/2 
{ m > -7/2 
Hợp nghiệm lại 
m ∈ ( -7/2 ; -1 ) ∪ ( -3 ; +∞ ) 

3) 2x² + (2m - 1)x + m - 1 = 0 
Ta có 
b² - 4ac = (2m - 1)² - 4.2.(m - 1) 
= 4m² - 4m + 1 - 8m + 8 
= 4m² - 12m + 9 
= ( 2m - 3 )² 
Mà ( 2m - 3 )² ≥ 0 , ∀m ∈ IR 

Gọi x1 và x2 là 2 nghiệm của pt 

x1 = [-(2m - 1) - 2m +3 ]/ 2 = ( -4m + 2 ) /2 = -2m + 1 
x2 = [-(2m - 1) +2m - 3 ]/ 2 = -2/2 = -1 

Thế 
3x1 - 4x2 = 11 
3( -2m + 1 ) - 4.(-1) = 11 
<=> -6m + 3 + 4 = 11 
<=> -2m = 4 
<=> m = -2 

4) x² - 2(m - 3)x - 2(m - 1) = 0 
Ta có 
[ 2(m - 3)]² - 4.(-2)(m - 1) 
= 4(m - 3)² + 8(m - 1) 
= 4(m² - 6m + 9) + 8m - 8 
= 4m² - 24m + 36 + 8m - 8 
= 4m² - 16m + 28 
Xét tiếp 
(-16)² - 4.4.28 = -192 < 0 mà 4m² là số dương nên 4m² - 16m + 28 > 0 , ∀m ∈ IR 

Áp dụng hệ thức Vi-ét 
{ x1 + x2 = 2(m - 3) 
{ x1x2 = -2(m - 1) 

<=> ( x1 + x2 )² = 4(m - 3)² 
<=> x1² + 2x1x2 + x2² = 4(m² - 6m + 9) 
<=> x1² + x2² - (m - 1) = 4m² - 24m + 36 
<=> x1² + x2² = 4m² - 24m + 36 + m - 1 
<=> x1² + x2² = 4m² - 23m + 35 
Để x1² + x2² Min thì 4m² - 23m + 35 phải Min 
<=> 4m² - 23/4.2.2m + 529/16 + 31/16 
<=> ( 2m - 23/4 )² + 31/16 
Mà ( 2m - 23/4 )² ≥ 0 , ∀m ∈ IR 
<=> ( 2m - 23/4 )² + 31/16 ≥ 31/16 > 0 
Vậy đạt Min khi đó "=" xảy ra : 2m - 23/4 = 0 
<=> m = 23/8 

Vậy m = 23/8 thì x1² + x2² đạt Min 
=> Amin = x1² + x2² = 4(23/8)² - 23(23/8) + 35 = 31/161) ( 2m - 1 )x² - 2mx + 1 = 0 
Ta có : 
b² - 4ac 
= (-2m)² - 4(2m - 1) 
= 4m² - 8m + 4 
= ( 2m - 2 )² 
Như vậy : (2m - 2)² ≥ 0 , ∀m ∈ IR 

Gọi x1 , x2 là 2 nghiệm của phương trình 
Áp dụng hệ thức Vi-ét 
{ x1 + x2 = 2m / (2m - 1) 
{ x1x2 = 1 / (2m - 1) 

Nếu nằm trong khoảng thì : 
-1 < x1 < x2 < 0 
Xét đoạn -1 < x1 < x2 
<=> 0 < x1 + 1 < x2 + 1 

Ta lập hệ pt sau 
{ (x1 + 1 )(x2 + 1) > 0 
{ x1 + 1 + x2 + 1 > 0 

{ x1 + x1x2 + x2 + 1 > 0 
{ x1 + x2 + 2 > 0 
Sử dụng Vi-ét 
=> 1/(2m - 1) + 2m/(2m - 1) + 1 > 0 
=> 2m / (2m - 1) + 2 > 0 

<=> ( 1 + 2m + 2m - 1 ) / (2m - 1) > 0 
<=> [2m + 2(2m - 1)] / (2m - 1) > 0 

<=> 4m / ( 2m - 1 ) > 0 
<=> ( 2m + 4m - 2 ) / ( 2m - 1 ) > 0 

<=> 4m / (2m - 1) > 0 
<=> ( 6m - 2 ) / ( 2m - 1 ) > 0 

Vẽ bảng xét dấu 
<=> m < 0 V m > 1/2 (1) 
<=> m < 1/2 V m > 3 (2) 

Xét đoạn x1 < x2 < 0 
{ x1 + x2 < 0 
{ x1x2 > 0 

{ 2m / (2m - 1) < 0 
{ 1 / (2m - 1) > 0 
Xét bảng xét dấu 
<=> 0 < m < 1/2 (3) 
<=> m > 1/2 (4) 

=> m không thuộc khoảng nào cả 
=> Vô nghiệm 

2) x² + 2(m + 3)x + 4m + 12 = 0 
Ta có 
b² - 4ac 
= [ 2(m + 3) ]² - 4(4m + 12) 
= 4(m + 3)² - 16m - 48 
= 4(m² + 6m + 9) - 16m - 48 
= 4m² + 24m + 36 - 16m - 48 
= 4m² + 8m - 12 
Để pt có nghiệm m < -1 V m > 3 

Gọi x1 , x2 là 2 nghiệm của pt 
Áp dụng hệ thức Vi-ét 
{ x1 + x2 = -2(m + 3) 
{ x1x2 = 4m + 12 

Ta đã có -1 < x1 < x2 
<=> 0 < x1 + 1 < x2 + 1 

Ta lập hệ bất pt sau : 
{ ( x1 + 1 )(x2 + 1 ) > 0 
{ x1 + 1 + x2 + 1 > 0 

{ x1 + x1x2 + x2 + 1 > 0 
{ x1 + x2 + 2 > 0 

{ -2(m + 3) + 4m + 12 + 1 > 0 
{ 4m + 12 + 2 > 0 

{ -2m - 6 + 4m + 12 + 1 > 0 
{ 4m + 14 > 0 

{ 2m > -7 
{ 4m > -14 

{ m > -7/2 
{ m > -7/2 
Hợp nghiệm lại 
m ∈ ( -7/2 ; -1 ) ∪ ( -3 ; +∞ ) 

3) 2x² + (2m - 1)x + m - 1 = 0 
Ta có 
b² - 4ac = (2m - 1)² - 4.2.(m - 1) 
= 4m² - 4m + 1 - 8m + 8 
= 4m² - 12m + 9 
= ( 2m - 3 )² 
Mà ( 2m - 3 )² ≥ 0 , ∀m ∈ IR 

Gọi x1 và x2 là 2 nghiệm của pt 

x1 = [-(2m - 1) - 2m +3 ]/ 2 = ( -4m + 2 ) /2 = -2m + 1 
x2 = [-(2m - 1) +2m - 3 ]/ 2 = -2/2 = -1 

Thế 
3x1 - 4x2 = 11 
3( -2m + 1 ) - 4.(-1) = 11 
<=> -6m + 3 + 4 = 11 
<=> -2m = 4 
<=> m = -2 

4) x² - 2(m - 3)x - 2(m - 1) = 0 
Ta có 
[ 2(m - 3)]² - 4.(-2)(m - 1) 
= 4(m - 3)² + 8(m - 1) 
= 4(m² - 6m + 9) + 8m - 8 
= 4m² - 24m + 36 + 8m - 8 
= 4m² - 16m + 28 
Xét tiếp 
(-16)² - 4.4.28 = -192 < 0 mà 4m² là số dương nên 4m² - 16m + 28 > 0 , ∀m ∈ IR 

Áp dụng hệ thức Vi-ét 
{ x1 + x2 = 2(m - 3) 
{ x1x2 = -2(m - 1) 

<=> ( x1 + x2 )² = 4(m - 3)² 
<=> x1² + 2x1x2 + x2² = 4(m² - 6m + 9) 
<=> x1² + x2² - (m - 1) = 4m² - 24m + 36 
<=> x1² + x2² = 4m² - 24m + 36 + m - 1 
<=> x1² + x2² = 4m² - 23m + 35 
Để x1² + x2² Min thì 4m² - 23m + 35 phải Min 
<=> 4m² - 23/4.2.2m + 529/16 + 31/16 
<=> ( 2m - 23/4 )² + 31/16 
Mà ( 2m - 23/4 )² ≥ 0 , ∀m ∈ IR 
<=> ( 2m - 23/4 )² + 31/16 ≥ 31/16 > 0 
Vậy đạt Min khi đó "=" xảy ra : 2m - 23/4 = 0 
<=> m = 23/8 

Vậy m = 23/8 thì x1² + x2² đạt Min 
=> Amin = x1² + x2² = 4(23/8)² - 23(23/8) + 35 = 31/16 

1 tháng 5 2016

bn dùng bao nhiêu thời gian để viết chỗ đó thế