Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(f'\left(x\right)=m^2x^4-mx^2+20x-\left(m^2-m-20\right)\)
Để hàm số đồng biến trên \(ℝ\)thì \(f'\left(x\right)\ge0,\)với mọi \(x\inℝ\).
Mà ta thấy \(f'\left(-1\right)=m^2-m-20-\left(m^2-m-20\right)=0\)
do đó \(x=-1\)là một điểm cực trị của hàm số \(f'\left(x\right)\).
Ta có: \(f''\left(x\right)=4m^2x^3-2mx+20\)
\(f''\left(-1\right)=0\Leftrightarrow-4m^2+2m+20=0\Leftrightarrow\orbr{\begin{cases}m=\frac{5}{2}\\m=-2\end{cases}}\).
Thử lại.
Với \(m=\frac{5}{2}\): \(f''\left(x\right)=25x^3-5x+20\)
\(f''\left(x\right)=0\Leftrightarrow x=-1\)
\(f'\left(-1\right)=0\)
do đó \(f'\left(x\right)\ge0\)thỏa mãn.
Với \(m=-2\): \(f''\left(x\right)=16x^3+4x+20\)
\(f''\left(x\right)=0\Leftrightarrow x=-1\).
\(f'\left(-1\right)=0\)
do đó \(f'\left(x\right)\ge0\)thỏa mãn.
Vậy tổng các giá trị của \(m\)là: \(\frac{5}{2}+\left(-2\right)=\frac{1}{2}\).
Chọn D.
\(\left(C_m\right)\) giao d: \(\frac{2x-m^2}{x+1}=m-x\Leftrightarrow x^2-\left(m-3\right)x-m^2-m=0\)
\(\Delta=5m^2-2m+9\Rightarrow x_A=\frac{m-3-\sqrt{5m^2-2m+9}}{2}\)
\(\left(C_m\right)\) giao d': \(\frac{2x-m^2}{x+1}=2-m-x\)
\(\Leftrightarrow2x-m^2=\left(2-m\right)x-x^2+2-m-x\)
\(\Leftrightarrow x^2+\left(m+1\right)x-m^2+m-2=0\)
\(\Delta=5m^2-2m+9\Rightarrow x_D=\frac{-m-1+\sqrt{5m^2-2m+9}}{2}\)
\(x_Ax_D=-3\Leftrightarrow\left(m-3-\sqrt{5m^2-2m+9}\right)\left(-m-1+\sqrt{5m^2-2m+9}\right)=-12\)
\(\Leftrightarrow-6m^2+4m+6+\left(2m-2\right)\sqrt{5m^2-2m+9}=0\)
\(\Leftrightarrow-\left(5m^2-2m+9\right)+2\left(m-1\right)\sqrt{5m^2-2m+9}-m^2+2m+15=0\)
Đặt \(\sqrt{5m^2-2m+9}=t\)
\(\Rightarrow-t^2+2\left(m-1\right)t-m^2+2m+15=0\)
\(\Delta'=m^2-2m+1-\left(m^2-2m-15\right)=16\)
\(\Rightarrow\left[{}\begin{matrix}t=m-5\\t=m+3\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\sqrt{5m^2-2m+9}=m-5\left(m\ge5\right)\\\sqrt{5m^2-2m+9}=m+3\left(m\ge-3\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}4m^2+8m-16=0\left(vn\right)\\4m^2-8m=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}m=0\\m=2\end{matrix}\right.\)
Có 2 phần tử
1.
Xét \(x^2-mx+m=0\) (1)
\(\Delta=m^2-4m\)
Hàm có đúng 1 tiệm cận đứng khi:
TH1: \(\Delta=0\Leftrightarrow\left[{}\begin{matrix}m=0\\m=4\end{matrix}\right.\)
Th2: (1) có 1 nghiệm \(x=1\)
\(\Leftrightarrow1-m+m=0\left(ktm\right)\)
Vậy \(m\in\left\{0;4\right\}\)
2.
\(\Leftrightarrow m=\frac{x^3+x^2+x}{\left(x^2+1\right)^2}\)
Xét hàm \(f\left(x\right)=\frac{x^3+x^2+x}{\left(x^2+1\right)^2}\Rightarrow f'\left(x\right)=\frac{\left(1-x\right)\left(x+1\right)^2}{\left(x^2+1\right)^3}\ge0;\forall x\in\left[0;1\right]\)
Hàm đồng biến trên [0;1] \(\Rightarrow f\left(0\right)\le m\le f\left(1\right)\Leftrightarrow0\le m\le\frac{3}{4}\)
3.
\(y'=-2sin2x-4sinx=0\Leftrightarrow sinx=0\)
\(\Rightarrow x=k\pi\)
\(y\left(0\right)=6\) ; \(y\left(\pi\right)=-2\)
\(\Rightarrow M=6\)
4.
\(y'=\frac{-1}{\left(x-1\right)^2}< 0\Rightarrow\) hàm số nghịch biến trên các khoảng \(\left(-\infty;1\right)\) và \(\left(1;+\infty\right)\)
5.
\(y'=\frac{-m\left(m-1\right)+2}{\left(sinx-m\right)^2}.cosx< 0\Leftrightarrow-m^2+m+2< 0\)
\(\Leftrightarrow m\in\left(-\infty;-1\right)\cup\left(2;+\infty\right)\)
\(y'=x^2-\left(3m+2\right)x+2m^2+3m+1\)
\(\Delta=\left(3m+2\right)^2-4\left(2m^2+3m+1\right)=m^2\)
\(\Rightarrow\left\{{}\begin{matrix}x_1=\frac{3m+2+m}{2}=2m+1\\x_2=\frac{3m+2-m}{2}=m+1\end{matrix}\right.\)
Để hàm số có cực đại, cực tiểu \(\Rightarrow x_1\ne x_2\Rightarrow m\ne0\)
- Nếu \(m>0\Rightarrow2m+1>m+1\Rightarrow\left\{{}\begin{matrix}x_{CĐ}=m+1\\x_{CT}=2m+1\end{matrix}\right.\)
\(\Rightarrow3\left(m+1\right)^2=4\left(2m+1\right)\) \(\Rightarrow3m^2-2m-1=0\Rightarrow\left[{}\begin{matrix}m=1\\m=-\frac{1}{3}< 0\left(l\right)\end{matrix}\right.\)
- Nếu \(m< 0\Rightarrow m+1>2m+1\Rightarrow\left\{{}\begin{matrix}x_{CĐ}=2m+1\\x_{CT}=m+1\end{matrix}\right.\)
\(\Rightarrow3\left(2m+1\right)^2=4\left(m+1\right)\Rightarrow12m^2+8m-1=0\)
\(\Rightarrow\left[{}\begin{matrix}m=\frac{-2+\sqrt{7}}{6}>0\left(l\right)\\m=\frac{-2-\sqrt{7}}{6}\end{matrix}\right.\) \(\Rightarrow\sum m=\frac{4-\sqrt{7}}{6}\)
lưa ý pt \(x^2=m^2-m+1\)có nghiệm với x phải #0 vì nếu = 0 thì trùng => sai
nhưng nghiệm \(\left(+,-\right)\sqrt{m^2-m+1}\)luôn #0 rồi khỏi lo
\(y'=6x^2-6\left(m+1\right)x+6m\)
ta có y/y'=\(\left(3m-1\right)x+m^3+m^2+m\)
suy ra y= \(\left(3m-1\right)x+m^3+m^2+m\)là pt của dường thẳng đi qua A và B
de-ta \(=9\left(m+1\right)^2-36m\)
y' có 2 \(n_o\)phân biệt khi m#1
hai hoành độ của hai điểm cực trị là :
\(X=\dfrac{-b\left(+,-\right)\sqrt{deta}}{a}=\)
\(\left[{}\begin{matrix}\dfrac{m+3}{2}\\\dfrac{3m-1}{2}\end{matrix}\right.\)<=>y=\(\left[{}\begin{matrix}2m^3+5m^2+10m+3\\2m^3+11m^2+4m+1\end{matrix}\right.\)(tìm y bằng cách thế x vào pt đường thẳng )
khoảng cách giữa hai điểm AB =\(\sqrt{2}\)
ta có pt : \(2=\left(\dfrac{m+3}{2}-\dfrac{3m-1}{2}\right)^2+\left(2m^3+5m^2+10m-3-\left(2m^3+11m^2-4m+1\right)\right)^2\)
lại sai chỗ nào rồi 0 ra nghiệm , cậu tính lại thử , cách giả là như vậy
Hàm số nghịch biến trên khoảng \(\left(1;+\infty\right)\)\(\Rightarrow y'\le0,x\in\left(1;+\infty\right)\) (*)
Trường hợp 1 : Nếu \(\Delta'\le0\Leftrightarrow4m^2-7m+1\le0\Leftrightarrow\frac{7-\sqrt{33}}{8}\le m\le\frac{7+\sqrt{33}}{8}\) thì theo định lí về dấu tam thức bậc 2 ta có \(y'\le0,x\in R\Rightarrow\) (*) luôn đúng.
Trường hợp 2 : Nếu \(\Delta'>0\Leftrightarrow4m^2-7m+1>0\Leftrightarrow m\le\frac{7-\sqrt{33}}{8}\) hoặc \(m\ge\frac{7+\sqrt{33}}{8}\)thì (*) đúng
\(\Leftrightarrow\) phương trình y'=0 có 2 nghiệm phân biệt \(x_1,x_2\) mà \(x_1<\)\(x_2\) và thỏa mãn x1 < x2 <= 1
\(\Leftrightarrow\frac{1-\sqrt{5}}{2}\le m\le\frac{7-\sqrt{33}}{8}\) hoặc \(\frac{7-\sqrt{33}}{8}\le m\le\frac{1-\sqrt{5}}{2}\)
Kết hợp trường hợp 1 và trường hợp 2 ta có
\(\Leftrightarrow\frac{1-\sqrt{5}}{2}\le m\le\frac{7-\sqrt{33}}{8}\) hoặc \(\frac{7-\sqrt{33}}{8}\le m\le\frac{1-\sqrt{5}}{2}\) thì hàm số nghịch biến trên khoảng \(\left(1;+\infty\right)\)
Ta có \(y'=-3x^2+6x+3m\) \(\Rightarrow\) hàm số nghịch biến trên khoảng \(\left(0;+\infty\right)\)\(\Leftrightarrow y'\le0\)
với mọi \(x\in\left(0;+\infty\right)\) (*)
Vì \(y'\left(x\right)\) liên tục tại x=0 nên (*)
\(\Leftrightarrow y'\le0\)với mọi \(x\in\)[0;\(+\infty\))
\(\Leftrightarrow-3x^2+6x+3m\le0\) với mọi \(x\in\)[0;\(+\infty\))
\(\Leftrightarrow m\le x^2-2x\), với mọi \(x\in\)[0;\(+\infty\))\(\Leftrightarrow m\le g\left(x\right);\)với mọi \(x\in\)[0;\(+\infty\)) (Trong đó \(g\left(x\right)=x^2-2x\)
\(\Leftrightarrow m\le Min_{\left(0;+\infty\right)}g\left(x\right)\)
Xét hàm số \(g\left(x\right)=x^2-2x\) trên với mọi \(x\in\)[0;\(+\infty\))\(\Rightarrow g'\left(x\right)=2x-2\Rightarrow g'\left(x\right)=0\Leftrightarrow x=1\)
\(\lim\limits_{x\rightarrow+\infty}g\left(x\right)=+\infty;g\left(0\right)=0;g\left(1\right)=-1\)\(\Rightarrow Min_{\left(0;+\infty\right)}g\left(x\right)=-1\) tại x=1
Vậy \(m\le-1\) thì hàm số nghịch biến trên khoảng \(\left(0;+\infty\right)\)
Chọn D.
Do đó ta có bảng biến thiên sau:
Để hàm số nghịch biến trên khoảng (-1;1) thì