K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 2 2019

Biến đổi vế trái ta có:

VT =  a 3 + b 3 =(a+b)( a 2 -ab+ b 2 )

=(a+b)( a 2 -2ab+ b 2 +ab)

=(a + b)[ a - b 2  + ab] = VP

Vế phải bằng vế trái nên đẳng thức được chứng minh.

17 tháng 1 2020

a) \(a^2+b^2+1\ge ab+a+b\)

\(\Leftrightarrow2a^2+2b^2+2\ge2ab+2a+2b\)

\(\Leftrightarrow2a^2+2b^2+2-2ab-2a-2b\ge0\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(a^2-2a+1\right)+\left(b^2-2b+1\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-1\right)^2+\left(a-1\right)^2\ge0\left(1\right)\)

Ta thấy \(\hept{\begin{cases}\left(a-b\right)^2\ge0;\forall a,b\\\left(a-1\right)^2\ge0;\forall a,b\\\left(b-1\right)^2\ge0;\forall a,b\end{cases}}\)\(\Rightarrow\left(a-b\right)^2+\left(b-1\right)^2+\left(a-1\right)^2\ge0;\forall a,b\)

\(\Rightarrow\left(1\right)\)luôn đúng

Dấu"="xảy ra \(\Leftrightarrow\hept{\begin{cases}\left(a-b\right)^2=0\\\left(a-1\right)^2=0\\\left(b-1\right)^2=0\end{cases}}\)

                     \(\Leftrightarrow\hept{\begin{cases}a=b\\a=1\\b=1\end{cases}\Leftrightarrow}a=b=1\)

Vậy... ( bạn ko cần phải ghi dấu bằng xảy ra cũng đúng nhé )

b) Xét hieuj \(a^3+b^3+c^3-3abc=\left(a+b\right)^3+c^3-3abc-3ab\left(a+b\right)\)

\(=\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)\)

\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)

\(=0\)( vì a+b+c=0 )

\(\Rightarrow a^3+b^3+c^3=3abc\left(đpcm\right)\)

18 tháng 1 2020

cảm ơn bạn nhiều ^_^

10 tháng 8 2016

a)a2+b2+c2+3=2(a+b+c)

=>a2+b2+c2+1+1+1-2a-2b-2c=0

=>(a2-2a+1)+(b2-2b+1)+(c2-2c+1)=0

=>(a-1)2+(b-1)2+(c-1)2=0

=>a-1=b-1=c-1=0 <=>a=b=c=1 

-->Đpcm

b)(a+b+c)2=3(ab+ac+bc)

=>a2+b2+c2+2ab+2ac+2bc -3ab-3ac-3bc=0 

=>a2+b2+c2-ab-ac-bc=0

=>2a2+2b2+2c2-2ab-2ac-2bc=0 

=>(a2- 2ab+b2)+(b2-2bc+c2) + (c2-2ca+a2) = 0

=>(a-b)2+(b-c)2+(c-a)2=0 

Hay (a-b)2=0 hoặc (b-c)2=0 hoặc (a-c)2=0

=>a-b hoặc b=c hoặc a=c

=>a=b=c 

-->Đpcm

c)a2+b2+c2=ab+bc+ca

=>2(a2+b2+c2)=2(ab+bc+ca)

=>2a2+2b2+c2=2ab+2bc+2ca

=>2a2+2b2+c2-2ab-2bc-2ca=0

=>a2+a2+b2+b2+c2+c2-2ab-2bc-2ca=0

=>(a2-2ab+b2)+(b2-2bc+c2)+(a2-2ca+c2)=0

=>(a-b)2+(b-c)2+(a-c)2=0

Hay (a-b)2=0 hoặc (b-c)2=0 hoặc (a-c)2=0

=>a-b hoặc b=c hoặc a=c

=>a=b=c 

-->Đpcm

23 tháng 7 2019

a. \(2\left(a^2+b^2\right)=\left(a-b\right)^2\)

\(\Leftrightarrow2a^2+2b^2=a^2+b^2-2ab\)

\(\Leftrightarrow a^2+b^2=-2ab\)

\(\Leftrightarrow a^2+2ab+b^2=0\)

\(\Leftrightarrow\left(a+b\right)^2=0\)

\(\Leftrightarrow a+b=0\Leftrightarrow a=-b\) (đpcm)

b. \(a^2+b^2+c^2+3=2\left(a+b+c\right)\)

\(\Leftrightarrow a^2+b^2+c^2+3-2a-2b-2c=0\)

\(\Leftrightarrow\left(a^2-2a+1\right)+\left(b^2-2b+1\right)+\left(c^2-2c+1\right)=0\)

\(\Leftrightarrow\left(a-1\right)^2+\left(b-1\right)^2+\left(c-1\right)^2=0\)

\(\left(a-1\right)^2;\left(b-1\right)^2;\left(c-1\right)^2\ge0\)

\(\Rightarrow\left(a-1\right)^2=\left(b-1\right)^2=\left(c-1\right)^2=0\)

\(\Leftrightarrow a-1=b-1=c-1=0\Leftrightarrow a=b=c=1\)

c. \(\left(a+b+c\right)^2=3\left(ab+bc+ca\right)\)

\(\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)=3\left(ab+bc+ca\right)\)

\(\Leftrightarrow a^2+b^2+c^2=ab+bc+ca\)

\(\Leftrightarrow2\left(a^2+b^2+c^2\right)=2\left(ab+bc+ca\right)\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

Tương tự câu b ta có a = b = c

22 tháng 3 2018

1a)\(\dfrac{a^2+b^2}{2}\ge\dfrac{\left(a+b\right)^2}{4}\)

\(\Leftrightarrow2\left(a^2+b^2\right)\ge\left(a+b\right)^2\)

\(\Leftrightarrow a^2-2ab+b^2\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\ge0\)(luôn đúng)

b)\(\dfrac{a^2+b^2+c^2}{3}\ge\dfrac{\left(a+b+c\right)^2}{9}\)

\(\Leftrightarrow3\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2ac-2bc\ge0\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)(luôn đúng)

22 tháng 3 2018

2a)\(a^2+\dfrac{b^2}{4}\ge ab\)

\(\Leftrightarrow a^2-ab+\dfrac{b^2}{4}\ge0\)

\(\Leftrightarrow a^2-2\cdot\dfrac{1}{2}b\cdot a+\left(\dfrac{1}{2}b\right)^2\ge0\)

\(\Leftrightarrow\left(a-\dfrac{1}{2}b\right)^2\ge0\)(luôn đúng)

b)Đã cm

c)\(a^2+b^2+1\ge ab+a+b\)

\(\Leftrightarrow2a^2+2b^2+2\ge2ab+2a+2b\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(a^2-2a+1\right)+\left(b^2-2b+1\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(a-1\right)^2+\left(b-1\right)^2\ge0\)(luôn đúng)

Dấu bằng xảy ra khi a=b=1

13 tháng 11 2017

Lm dc hết chưa bn ơi.

13 tháng 11 2017

câu 2

a^4 + b^4 + c^4 + d^4 = 4abcd

<=> \(a^4-2a^2b^2+b^4+c^4-2c^2d^2+d^4+2a^2b^2-4abcd+2b^2d^2=0\)

<=> \(\left(a^2-b^2\right)^2+\left(c^2-d^2\right)^2+2\left(ab-cd\right)^2=0\)

<=> \(\left\{{}\begin{matrix}a^2=b^2\\c^2=d^2\\ab=cd\end{matrix}\right.\Leftrightarrow a=b=c=d\)

15 tháng 8 2019

a) x^3+y^3>0=>x-y>0

x-y=x^3+y^3>x^3-y^3=(x-y)(x^2+xy+y^2)

=>x-y>(x-y)(x^2+xy+y^2) Do x-y>0 => 1>x^2+xy+y^2 =>1>x^2+y^2 b) a^2+b^2+ab+bc+ca<0 =>2a^2+2b^2+2ab+2bc+2ca<0 =>a^2+b^2-c^2+(a+b+c)^2<0 Mà (a+b+c)^2>=0 =>a^2+b^2-c^2<0 <=>a^2+b^2<c^2
5 tháng 11 2017

khó quá

27 tháng 3 2018

dễ mà cô nương

\(a^3-b^3=\left(a-b\right)\left(a^2+ab+b^2\right)\)

\(\left(a^2+ab+b^2\right)=\left\{\left(a+b\right)^2-ab\right\}\)

\(a^3-b^3=\left(a-b\right)\left(25-6\right)=19\left(a-b\right)\)

ta có 

\(a=-5-b\)

suy ra

\(a^3-b^3=19\left(-5-2b\right)\) " xong "

2, trên mạng đầy

3, dytt mọe mày ngu ab=6 thì cmm nó phải chia hết cho 6 chứ :)

4 . \(x^2-\frac{2.1}{2}x+\frac{1}{4}+\frac{1}{3}-\frac{1}{4}>0\) tự làm dcmm

5. trên mạng đầy

6 , trên mang jđầy 

a: \(a^3+b^3-a^2b-ab^2\)

\(=\left(a+b\right)\left(a^2-ab+b^2\right)-ab\left(a+b\right)\)

\(=\left(a+b\right)\left(a-b\right)^2>=0\)

=>\(a^3+b^3>=a^2b+ab^2\)

c: \(a^2+b^2=\left(a+b\right)^2-2ab=1-2ab>=\dfrac{1}{2}\)

AH
Akai Haruma
Giáo viên
24 tháng 6 2020

Lời giải:

a)

$a+b+c=0\Leftrightarrow (a+b+c)^2=0$

$\Leftrightarrow a^2+b^2+c^2+2(ab+bc+ac)=0$

$\Rightarrow ab+bc+ac=-\frac{a^2+b^2+c^2}{2}\leq 0$

Mà $a^2\geq 0$

Do đó: $a^2(ab+bc+ac)\leq 0$

$\Leftrightarrow a^3b+a^2bc+a^3c\leq 0$ (đpcm)

Dấu "=" xảy ra khi $a=0$

b)

Từ ĐKĐB \(\Rightarrow \left\{\begin{matrix} a+b=(3c+3)\\ 4ab=9c^2\end{matrix}\right.\)

Ta biết rằng $(a+b)^2=(a-b)^2+4ab\geq 4ab$

$\Leftrightarrow (3c+3)^2\geq 9c^2$

$\Leftrightarrow (c+1)^2\geq c^2$

$\Leftrightarrow 2c+1\geq 0\Leftrightarrow c\geq \frac{-1}{2}$ (đpcm)

Vậy.......

24 tháng 4 2017

Do a,b đều dương nên a^3 + b^3 dương => a - b dương 

Nhân cả hai vế của bất đẳng thức cần chứng minh với a - b ta được : 

    \(a^2+b^2+ab<1\) 

<=> \(\left(a-b\right)\left(a^2+b^2+ab\right) 

<=> \(a^3-b^3=a^3+b^3\) 

do b dương nên b^3 > 0 => bất đẳng thức cuối cùng đúng

Vậy bất đẳng thức đã cho là đúng (đpcm)

24 tháng 4 2017

bổ sung : do a - b dương nên khi nhân a - b vào cả hai vế thì BĐT không đổi chiều.