K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 12 2019

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Ta có: AC ⊥ CD và BD ⊥ CD (tính chất tiếp tuyến)

Suy ra: AC // BD hay tứ giác ABDC là hình thang

Mà OA = OB (bán kính (O))

Và AC = MD (bán kính (M))

Suy ra OM là đường trung bình của hình thang ABDC

Khi đó OM // AC. Suy ra: OM ⊥ CD hay góc (OMI) = 90 °

Tam giác OMI vuông tại M có MH ⊥ OI

Theo hệ thức lượng trong tam giác vuông ta có: O M 2  = OH.OI

Suy ra: OH.OI =  R 2  không đổi.

23 tháng 6 2017

Đường tròn

30 tháng 6 2017

bạn ko chứng minh ABDC là hình thang ak?

16 tháng 1 2018

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Trong đường tròn (M; MH), theo tính chất hai tiếp tuyến cắt nhau, ta có:

AC = AH và BD = BH

Khi M thay đổi trên nửa đường tròn tâm O thì AC luôn bằng AH và BD luôn bằng BH

Suy ra: AC + BD = AH + BH = AB không đổi

5 tháng 10 2018

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Trong đường tròn (M; MH), theo tính chất hai tiếp tuyến cắt nhau, ta có:

- MA là tia phân giác của góc HMC

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Vậy C, M, D thẳng hàng.

24 tháng 8 2019

A B M H O C D I

a) Áp dụng tính chất hai tiếp tuyến giao nhau: ^HMC = 2.^AMH; ^HMD = 2.^BMH

Suy ra ^HMC + ^HMB = 2(^AMH + ^BMH) = 1800 => 3 điểm C,M,D thẳng hàng (đpcm).

Có C,M,D thẳng hàng, Do C,D thuộc (M;MH) nên CD là đường kính của (M;MH)

Khi đó MO là đường trung bình của hình thang vuông ACDB => MO // AC // BD

=> MO vuông góc CD => CD là tiếp tuyến của (O) (đpcm).

b) Dễ thấy AC + BD = AH + BH = 2R (R là bán kính của (O)) (không đổi).

c) Áp dụng hệ thức lượng trong tam giác vuông IMO có OH.OI = OM2 = R2 (không đổi).

30 tháng 11 2017

cau hoi sai

14 tháng 12 2017

dung roi cau hỏi sai