K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 6 2017

Đường tròn

30 tháng 6 2017

bạn ko chứng minh ABDC là hình thang ak?

24 tháng 8 2019

A B M H O C D I

a) Áp dụng tính chất hai tiếp tuyến giao nhau: ^HMC = 2.^AMH; ^HMD = 2.^BMH

Suy ra ^HMC + ^HMB = 2(^AMH + ^BMH) = 1800 => 3 điểm C,M,D thẳng hàng (đpcm).

Có C,M,D thẳng hàng, Do C,D thuộc (M;MH) nên CD là đường kính của (M;MH)

Khi đó MO là đường trung bình của hình thang vuông ACDB => MO // AC // BD

=> MO vuông góc CD => CD là tiếp tuyến của (O) (đpcm).

b) Dễ thấy AC + BD = AH + BH = 2R (R là bán kính của (O)) (không đổi).

c) Áp dụng hệ thức lượng trong tam giác vuông IMO có OH.OI = OM2 = R2 (không đổi).

14 tháng 12 2019

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Ta có: AC ⊥ CD và BD ⊥ CD (tính chất tiếp tuyến)

Suy ra: AC // BD hay tứ giác ABDC là hình thang

Mà OA = OB (bán kính (O))

Và AC = MD (bán kính (M))

Suy ra OM là đường trung bình của hình thang ABDC

Khi đó OM // AC. Suy ra: OM ⊥ CD hay góc (OMI) = 90 °

Tam giác OMI vuông tại M có MH ⊥ OI

Theo hệ thức lượng trong tam giác vuông ta có: O M 2  = OH.OI

Suy ra: OH.OI =  R 2  không đổi.

16 tháng 1 2018

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Trong đường tròn (M; MH), theo tính chất hai tiếp tuyến cắt nhau, ta có:

AC = AH và BD = BH

Khi M thay đổi trên nửa đường tròn tâm O thì AC luôn bằng AH và BD luôn bằng BH

Suy ra: AC + BD = AH + BH = AB không đổi

5 tháng 10 2018

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Trong đường tròn (M; MH), theo tính chất hai tiếp tuyến cắt nhau, ta có:

- MA là tia phân giác của góc HMC

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Vậy C, M, D thẳng hàng.

20 tháng 5 2020

Goi y cau d: Keo dai IP cat AN tai F, P se di dong tren dt dk FB co dinh

24 tháng 5 2020

cảm ơn cậu, tớ giải được rồi

a: Xét (O) co

CM,CA là tiếp tuyên

=>CM=CA 

Xét (O) có

DM,DB là tiếp tuyến

=>DM=DB

CD=CM+MD

=>CD=CA+BD

b: Xet ΔACN và ΔDBN có

góc NAC=góc NDB

góc ANC=góc DNB

=>ΔACN đồng dạng vơi ΔDBN

=>AC/BD=AN/DN

=>CN/MD=AN/ND

=>MN//AC//BD

20 tháng 9 2018

Để học tốt Toán 9 | Giải bài tập Toán 9

a) Theo tính chất của hai tiếp tuyến cắt nhau ta có:

    OC là tia phân giác của ∠AOM

    OD và tia phân giác của ∠BOM

OC và OD là các tia phân giác của hai góc kề bù ∠AOM và ∠BOM nên OC ⊥ OD.

=> ∠COD = 90o (đpcm)

b) Theo tính chất của hai tiếp tuyến cắt nhau ta có:

    CM = AC, DM = BC

Do đó: CD = CM + DM = AC + BD (đpcm)

c) Ta có: AC = CM, BD = DM nên AC.BD = CM.MD

ΔCOD vuông tại O, ta có:

CM.MD = OM2 = R2 (R là bán kính đường tròn O).

Vậy AC.BD = R2 (không đổi).

30 tháng 11 2017

cau hoi sai

14 tháng 12 2017

dung roi cau hỏi sai