Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Đặt |x-6|=a, |y+1|=b
Theo đề, ta có hệ phương trình:
\(\left\{{}\begin{matrix}2a+3b=5\\5a-4b=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=1\end{matrix}\right.\)
=>|x-6|=1 và |y+1|=1
\(\Leftrightarrow\left\{{}\begin{matrix}x\in\left\{7;5\right\}\\y\in\left\{0;-2\right\}\end{matrix}\right.\)
b: Đặt |x+y|=a, |x-y|=b
Theo đề, ta có: \(\left\{{}\begin{matrix}2a-b=19\\3a+2b=17\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{55}{7}\\b=-\dfrac{23}{7}\left(loại\right)\end{matrix}\right.\)
=>HPTVN
c: Đặt |x+y|=a, |x-y|=b
Theo đề ta có: \(\left\{{}\begin{matrix}4a+3b=8\\3a-5b=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=2\\b=0\end{matrix}\right.\)
=>|x+y|=2 và x=y
=>|2x|=2 và x=y
=>x=y=1 hoặc x=y=-1
bài 1
coi bậc 2 với ẩn x tham số y D(x) phải chính phường
<=> (2y-3)^2 -4(2y^2 -3y+2) =k^2
=> -8y^2 +1 =k^2 => y =0
với y =0 => x =-1 và -2
\(a=4;b=3\Rightarrow c=\sqrt{a^2+b^2}=5\)
Độ dài trục thực: \(2a=8\)
Tiêu cự: \(2c=10\)
a) để \(y=\sqrt{x+6\sqrt{x-1}+8}+\dfrac{5}{1-x}\) có nghĩa
\(\Leftrightarrow\left\{{}\begin{matrix}x-1\ge0\\1-x\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge1\\x\ne1\end{matrix}\right.\Rightarrow x>1\) vậy \(x>1\)
b) để \(y=\dfrac{3x-5}{x^3-x^2+3x-3}\) có nghĩa
\(\Leftrightarrow x^3-x^2+3x-3\ne0\Leftrightarrow x^2\left(x-1\right)+3\left(x-1\right)\ne0\)
\(\Leftrightarrow\left(x^2+3\right)\left(x-1\right)\ne0\Leftrightarrow x-1\ne0\Leftrightarrow x\ne1\)
c) để \(y=\dfrac{3x+1}{\left|3x-1\right|+\left|x-7\right|}\ne0\)
\(\Leftrightarrow\left|3x-1\right|+\left|x-7\right|\ne0\Leftrightarrow\left[{}\begin{matrix}3x-1\ne0\\x-7\ne0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x\ne\dfrac{1}{3}\\x\ne7\end{matrix}\right.\)
\(\Rightarrow x\in R\)
d) để : \(y=\dfrac{\sqrt{x-2}}{\left|x-3\right|+\sqrt{9-x^2}}\) có nghĩa
\(\Leftrightarrow\left\{{}\begin{matrix}x-2\ge0\\9-x^2\ge0\\\left|x-3\right|+\sqrt{9-x^2}\ne0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\ge2\\-3\le x\le3\\x\ne3\end{matrix}\right.\Rightarrow2\le x< 3\)
5. \(y=\dfrac{-3x}{x+2}\)
xác định khi: \(x+2\ne0\Leftrightarrow x\ne-2\)
vậy D= (\(-\infty;+\infty\))\{-2}
6. \(y=\sqrt{-2x-3}\)
xác định khi: \(-2x-3\ge0\Leftrightarrow x\le\dfrac{-3}{2}\)
vậy D= (\(-\infty;\dfrac{-3}{2}\)]
7. \(y=\dfrac{3-x}{\sqrt{x-4}}\)
xác định khi: x-4 >0 <=> x>4
vậy D= (\(4;+\infty\))
8. \(y=\dfrac{2x-5}{\left(3-x\right)\sqrt{5-x}}\)
xác định khi: \(\left\{{}\begin{matrix}3-x\ne0\\5-x>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne3\\x< 5\end{matrix}\right.\)
vậy D= (\(-\infty;5\))\ {3}
9.\(y=\sqrt{2x+1}+\sqrt{4-3x}\)
xác định khi: \(\left\{{}\begin{matrix}2x+1\ge0\\4-3x\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{-1}{2}\\x\le\dfrac{4}{3}\end{matrix}\right.\)
\(\Leftrightarrow\dfrac{-1}{2}\le x\le\dfrac{4}{3}\)
vậy D= [\(\dfrac{-1}{2};\dfrac{4}{3}\)]
1. \(y=\dfrac{3x-2}{x^2-4x+3}\)
xác định khi : \(x^2-4x+3\ne0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ne3\\x\ne1\end{matrix}\right.\)
vậy tập xác định là: D = \(\left(-\infty;+\infty\right)\backslash\left\{3;1\right\}\)
2.\(y=2\sqrt{5-4x}\)
xác định khi \(5-4x\ge0\Leftrightarrow x\le\dfrac{5}{4}\)
vậy D= (\(-\infty;\dfrac{5}{4}\)]
3. \(y=\dfrac{2}{\sqrt{x+3}}+\sqrt{5-2x}\)
xác định khi: \(\left\{{}\begin{matrix}x+3>0\\5-2x\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>-3\\x\le\dfrac{5}{2}\end{matrix}\right.\)
\(\Leftrightarrow-3< x\le\dfrac{5}{2}\)
vậy D= (\(-3;\dfrac{5}{2}\)]
4.\(\sqrt{9-x}+\dfrac{1}{\sqrt{x+2}-2}\)
xác định khi: \(\left\{{}\begin{matrix}9-x\ge0\\x+2\ge0\\x\ne2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\le9\\x\ge-2\\x\ne2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-2\le x\le9\\x\ne2\end{matrix}\right.\)
Vậy D= [\(-2;9\)]\{2}
Đáp án: C
6 x 2 - 9 y 2 = 54
Phương trình hai đường tiệm cận của hypebol là: