Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ABCD là hình thoi, = nên = , = .EAH là tam giác đều (vì tam giác cân có một góc ) nên = , = . Cũng thế = , = .
Vậy EBFGDH có tất cả các góc bằng nhau, mặt khác EBFGDH cũng có tất cả các cạnh bằng nhau( bằng nửa cạnh hình thoi)
Vậy EBFGDH là một lục giác đều
ABCD là hình thoi, = nên = , = .EAH là tam giác đều (vì tam giác cân có một góc ) nên = , = . Cũng thế = , = .
Vậy EBFGDH có tất cả các góc bằng nhau, mặt khác EBFGDH cũng có tất cả các cạnh bằng nhau( bằng nửa cạnh hình thoi)
Vậy EBFGDH là một lục giác đều
Bạn tham khảo ở link này nha :
https://h.vn/hoi-dap/question/246529.html
~~ Hok tốt ~~
Hình tự vẽ nhé , với lại chỉ ghi hướng cho nhan thôi chứ làm chi tiết lâu lắm
a)Chứng minh AG vuông góc với HF ( để ý góc D = 60 đỏồi tính toán các góc để có được góc = 90 độ)
Gọi FG giao với BD tại M, thì dễ dàng chứng minh được M là trung điểm của FG => IM là đường trung bình
=> IM //AG
Mà AG vuông góc với HF => IM vuông góc với HF
gọi PG giao với MH=O, thì dễ dàng chứng minh PHGM là hình chữ nhật => O là trung điểm của PG và HM
thì ta có tam giác HIM vuông tại I có O là trung điểm của HM => IO=1/2HM=1/2PG => tam giác PIG vuông tại I(ĐPCM)
hóng các cao nhân ý b ^_^
Chứng minh được M Q = N P = 1 2 B D
Chứng minh tam giác ABD đều, suy ra được MN = BN = NP PD = DQ = QM
Chứng minh các góc của đa giác MBNPDQ bằng nhau và cùng bằng 1200.
Từ đó quy ra đa giác MBNPDQ là lục giác đều (ĐPCM).
Bài 1: Giải: Xét tam giác ACD có F,G lần lượt là trung điểm AC,DC nên FG là đường trung bình
\(\Rightarrow\)\(FG//AD\)
C/m tương tự đc \(EH//AD; GH//EF//BC\)
\(\Rightarrow EFGH\) là hình bình hành
a/Để EFGH là hình chữ nhật thì góc \(FGH=90^o\)
\(\Rightarrow góc HGD+góc FGC=90^o\)
Mà góc HGD=góc BCD;góc FGC= góc ADC ( góc đồng vị = nhau)
\(\Rightarrow\) góc BCD+góc ADC=\(90^o\)
\(\Rightarrow\)Để EFGH là hình chữ nhật thì tứ giác ABCD cần có góc BCD+góc ADC=\(90^o\)
b/Để EFGH là hình thoi thì FG=HG
Mà FG=1/2AD; HG=1/2BC
\(\Rightarrow\)AD=BC
\(\Rightarrow\)Để EFGH là hình thoi thì tứ giác ABCD có AD=BC
c/ để EFGH là hình vuông thì EFGH phải vừa là hình chữ nhật vừa là hình thoi\(\Rightarrow \)ABCD phải có đủ cả 2 điều kiện trên
a) FN là đường trung bình của tam giác ADC
\(\Rightarrow FN=\frac{AD}{2}\)
EM là đường trung bình của tam giác ADB
\(\Rightarrow EM=\frac{AD}{2}\)
NE là đường trung bình của tam giác ABC
\(\Rightarrow EN=\frac{CB}{2}\)
FM là đường trung bình của tam giác BDC
\(\Rightarrow FM=\frac{CB}{2}\)
Mà AD = BC (gt)
\(\Rightarrow FN=EM=EN=FM=\frac{AD}{2}=\frac{CB}{2}\)
\(\Rightarrow FN=EM=EN=FM\)
=> Tứ giác FNEM là hình thoi
b) FM là đường trung bình của tam giác BDC
\(\Rightarrow FM//BC\Leftrightarrow\widehat{DFM}=\widehat{DCB}=80^o\)
FN là đường trung bình của tam giác ADC
\(\Rightarrow FN//AD\Leftrightarrow\widehat{CFN}=\widehat{CDA}=40^o\)
Ta có \(\widehat{CFN}+\widehat{MFN}+\widehat{DFM}=180^o\)
\(\Leftrightarrow40^o+\widehat{MFN}+80^o=180^o\Leftrightarrow\widehat{MFN}=60^o\)
+ ABCD là hình thoi
⇒ AD // BC
+ ABCD là hình thoi ⇒ AB = BC = CD = DA
Mà E, F, G, H là trung điểm của 4 đoạn thẳng trên
⇒ AE = EB = BF = FC = CG = GD = DH = HA.
ΔAEH có góc A = 60º và AE = AH nên là tam giác đều
+ Lại có ΔAEH đều
⇒ EH = AH = AE.
Chứng minh tương tự : FG = FC = CG
⇒ EB = BF = FG = GD = DH = HE.
Vậy EBFGDH có tất cả các góc bằng nhau và tất cả các cạnh bằng nhau nên là lục giác đều.