K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 6 2017

Ta xét các phương án:

(I) có: 

(II) có:

(III) tương đương : x2+ y2 – 2x - 3y + 0,5= 0.

phương trình này có:

Vậy chỉ (I) và (III) là phương trình đường tròn.

Chọn D.

12 tháng 4 2016

a)     Tâm I(2 ; -4), R = 5

b)    Đường tròn có phương trình:    (x – 2 )2 + (y + 4)2  = 25

Thế tọa độ A(-1 ; 0) vào vế trái, ta có :

(-1- 2 )2 + (0 + 4)2  = 32 + 42 = 25

Vậy A(-1 ;0) là điểm thuộc đường tròn.

Áp dụng công thức tiếp tuyến (Xem sgk)

Ta được pt tiếp tuyến với đường tròn tai A là:

(-1 – 2)(x – 2) + (0 + 4)(y + 4) = 25   <=>   3x – 4y + 3 = 0

Chú ý:

1. Theo tính chất tiếp tuyến với đường tròn tại 1 điểm thuộc đường tròn thì vuông góc với bán kính đi qua tiếp điểm, ta có thể giải câu này như sau:

Vectơ    = (-3; 4)

Tiếp tuyến đi qua A(-1; 0) và nhận  làm một vectơ pháp tuyến có phương trình:

-3(x + 1) + 4(y – 0) = 0  ,<=> 3x – 4y + 3 = 0

24 tháng 7 2016

Giải các phương trình và hệ phương trình:

a) x2 - \(2\sqrt{5}\)x + 5 = 0

Ta có: x2 - \(2\sqrt{5}\)x + 5 = 0 <=> ( x = \(\sqrt{5}\) )2 = 0 <=> x - \(\sqrt{5}\) = 0 <=> x = \(\sqrt{5}\)

Vậy phương trình đã cho có tập nghiệm S = ( \(\sqrt{5}\) )

24 tháng 7 2016

c) \(\begin{cases}2x+5y=-1\\3x-2y=8\end{cases}\) <=> \(\begin{cases}6x+15y=-3\\6x-4y=16\end{cases}\) <=> \(\begin{cases}19y=-19\\3x-2y=8\end{cases}\) <=> \(\begin{cases}y=-1\\3x-2.\left(-1\right)=8\end{cases}\) <=> \(\begin{cases}y=-1\\x=2\end{cases}\)

Vậy hệ phương trình có 1 nghiệm duy nhất (x ; y) = (2 ; -1)

a: \(x^2-2x+\left|x-1\right|-1=0\)

\(\Leftrightarrow x^2-2x+1+\left|x-1\right|-2=0\)

\(\Leftrightarrow\left(\left|x-1\right|\right)^2+\left|x-1\right|-2=0\)

\(\Leftrightarrow\left(\left|x-1\right|+2\right)\left(\left|x-1\right|-1\right)=0\)

=>|x-1|=1

=>x-1=1 hoặc x-1=-1

=>x=2 hoặc x=0

b: \(4x^2-4x-\left|2x-1\right|-1=0\)

\(\Leftrightarrow4x^2-4x+1-\left|2x-1\right|-2=0\)

\(\Leftrightarrow\left(\left|2x-1\right|\right)^2-\left|2x-1\right|-2=0\)

\(\Leftrightarrow\left(\left|2x-1\right|-2\right)\left(\left|2x-1\right|+1\right)=0\)

=>|2x-1|=2

=>2x-1=2 hoặc 2x-1=-2

=>x=3/2 hoặc x=-1/2

c: \(\left|2x-5\right|+\left|2x^2-7x+5\right|=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x-5=0\\\left(2x-5\right)\left(x-1\right)=0\end{matrix}\right.\Leftrightarrow x=\dfrac{5}{2}\)

d: \(x^2-2x-5\left|x-1\right|-5=0\)

\(\Leftrightarrow x^2-2x+1-5\left|x-1\right|-6=0\)

\(\Leftrightarrow\left(\left|x-1\right|\right)^2-5\left|x-1\right|-6=0\)

\(\Leftrightarrow\left(\left|x-1\right|-6\right)\left(\left|x-1\right|+1\right)=0\)

=>|x-1|=6

=>x-1=6 hoặc x-1=-6

=>x=7 hoặc x=-5

10 tháng 2 2020

a) △ = \(m^2-28\ge0\)\(\Leftrightarrow\left[{}\begin{matrix}m\ge\sqrt{28}\\m\le-\sqrt{28}\end{matrix}\right.\)

Theo Vi-ét \(\left\{{}\begin{matrix}x_1+x_2=-m\\x_1x_2=7\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x_1^2+x_2^2+2x_1x_2=m^2\\x_1x_2=7\end{matrix}\right.\)

\(\Rightarrow m^2=24\)\(\Leftrightarrow\left[{}\begin{matrix}m=\sqrt{24}\\m=-\sqrt{24}\end{matrix}\right.\)(không thỏa mãn)

b) △ = \(4-4\left(m+2\right)\ge0\)\(\Leftrightarrow m\le-1\)

Theo Vi-ét \(\left\{{}\begin{matrix}x_1+x_2=2\\x_1x_2=m+2\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x_1^2+x_2^2+2x_1x_2=4\\x_1x_2=m+2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x_2-x_1\right)^2+4x_1x_2=4\\x_1x_2=m+2\end{matrix}\right.\)

\(\Rightarrow4+4\left(m+2\right)=4\)\(\Leftrightarrow m=-2\)(thỏa mãn)

c) △ = \(\left(m-1\right)^2-4\left(m+6\right)\)\(\ge0\)\(\Leftrightarrow m^2-2m+1-4m-24\ge0\)

\(\Leftrightarrow m^2-6m-23\ge0\)

\(\Leftrightarrow\left(m-3\right)^2\ge32\)\(\Leftrightarrow\left[{}\begin{matrix}m\ge\sqrt{32}+3\\m\le-\sqrt{32}+3\end{matrix}\right.\)

Theo Vi-ét \(\left\{{}\begin{matrix}x_1+x_2=1-m\\x_1x_2=m+6\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x_1^2+x_2^2+2x_1x_2=m^2-2m+1\\x_1x_2=m+6\end{matrix}\right.\)

\(\Rightarrow10+2\left(m+6\right)=m^2-2m+1\)

\(\Leftrightarrow m^2-4m-21=0\)\(\Leftrightarrow\left(m+3\right)\left(m-7\right)=0\)\(\Leftrightarrow\left[{}\begin{matrix}m=7\\m=-3\end{matrix}\right.\)\(\Leftrightarrow m=-3\)(thỏa mãn)

mấy câu kia cũng dùng Vi-ét xử tiếp nha

12 tháng 4 2016

I(2; -3); R = 4

NV
3 tháng 7 2020

\(S=\pi R^2=36\pi\Rightarrow R=6\)

Phương trình đường tròn:

\(\left(x+2\right)^2+\left(y-0\right)^2=36\)

\(\Leftrightarrow x^2+y^2+4x-32=0\)