Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án B
+ Với hiện tượng sóng dừng trên dây, hai đầu cố định, hiệu hai tần số liên tiếp cho sóng dừng đúng bằng tần số cho sóng dừng trên dây với một bó sóng.
Ta có: l = v 1 2 f 1 = k F 1 2 . 32 l = v 2 2 f 2 = k 4 f 1 2 f 2 ⇒ f 2 = 2 f 1 = 64 Hz .
Sóng dừng trên dây có 2 đầu cố định thì tần số cơ bản \(f_0\) (tần số nhỏ nhất để có sóng dừng ứng với 1 bó sóng)
Thì các tần số để có sóng dừng là: \(f_n=n.f_0\)
Suy ra: \(f_0=8Hz\)
Có: \(\dfrac{1}{\lambda_{n+1}}-\dfrac{1}{\lambda_{n}}=\dfrac{f_{n+1}}{v}-\dfrac{f_{n}}{v}=\dfrac{8}{v}=0,2\Rightarrow v=40m/s\)
Tần số âm cơ bản ứng với 1 bó sóng ta có: \(l=\dfrac{\lambda}{2}=\dfrac{v}{2f_0}=\dfrac{40}{2.8}=2,5m\)
Chọn D.
Em phải post mỗi câu hỏi 1 bài thôi nhé, để tiện thảo luận.
1. Điều kiện có sóng dừng trên dây có một đầu cố định một đầu tự do: \(L=(2n+1)\frac{\lambda}{4}=(2n+1)\frac{v}{4f}\) (L là chiều dài dây)
\(\Rightarrow n=\frac{1}{2}(\frac{4fL}{v}-1)\)
Do f từ 80Hz đến 120 Hz nên ta tìm được n thỏa mãn sẽ từ 12 đến 17
Do đó có 6 tần số có thể tạo sóng dừng trên dây.
2. Điều chỉnh C để công suất cực đại --> Cộng hưởng xảy ra ---> \(P=\dfrac{U^2}{R}=600(W)\)
Điều chỉnh C = C2 thì công suất sẽ là: \(P_2=\dfrac{U^2}{R}\cos^2(\varphi)=600.(\dfrac{\sqrt 3}{2})^2=450W\)
+ Với hiện tượng sóng dừng trên dây, hai đầu cố định, hiệu hai tần số liên tiếp cho sóng dừng đúng bằng tần số cho sóng dừng trên dây với một bó sóng.
Đáp án B