Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{1.5}+\frac{1}{5.10}+\frac{1}{10.15}+\frac{1}{15.20}+......+\frac{1}{2005.2010}\)
\(=\frac{1}{5}+\frac{1}{5}\left(\frac{5}{5.10}+\frac{5}{10.15}+\frac{5}{15.20}+.......+\frac{5}{2005.2010}\right)\)
\(=\frac{1}{5}+\frac{1}{5}\left(\frac{1}{5}-\frac{1}{10}+\frac{1}{10}-\frac{1}{15}+......+\frac{1}{2005}-\frac{1}{2010}\right)\)
\(=\frac{1}{5}+\frac{1}{5}\left(\frac{1}{5}-\frac{1}{2010}\right)\)
\(=\frac{1}{5}+\frac{1}{5}\frac{401}{2010}\)
\(=\frac{1}{5}+\frac{401}{10050}=\frac{2411}{10050}\)
N = (1/1 - 1/5 + 1/5 -1/10 + ... + 1/2005 - 1/2010 ) x 5
N = (1/1 - 1/2010 ) x5
N = 2009/2010 x5
N = 2009/402
N = 1/1x5 + 1/5x10 + 1/10x15 + 1/15x20 + .....+1/2005 x 2010
N = 1 - 1/5 +1/5-1/5+1/10-1/15+1/5-1/20+.....+1/2005-1/2010
N = 1 - 1/2010
N = 2009/2010
Ta có:
\(N=\frac{1}{1x5}+\frac{1}{5x10}+\frac{1}{10x15}...+\frac{1}{2005x2010}\)
\(\Rightarrow Nx5=\left(\frac{1}{1x5}+\frac{1}{5x10}+\frac{1}{10x15}...+\frac{1}{2005x2010}\right)x5\)
\(=\frac{5}{1x5}+\frac{5}{5x10}+\frac{5}{10x15}...+\frac{5}{2005x2010}\)
\(=1-\frac{1}{5}+\frac{1}{5}-\frac{1}{10}+\frac{1}{10}-\frac{1}{15}+...+\frac{1}{2005}-\frac{1}{2010}\)
\(=1-\frac{1}{2010}\)
\(=\frac{2009}{2010}\)
\(\Rightarrow N=\frac{2009}{2010}:5=\frac{2009}{2010}x\frac{1}{5}=\frac{2009}{10050}\)
a) MC :24
\(\frac{1}{3}+\frac{3}{8}-\frac{7}{12}=\frac{1\times8+3\times3-7\times2}{24}=\frac{3}{24}=\frac{1}{8}\)
b)MC : 56
\(\frac{3}{14}+\frac{5}{8}-\frac{1}{2}=\frac{3\times4+5\times7-1\times28}{56}=\frac{19}{56}\)
c) MC: 36
\(\frac{1}{4}-\frac{2}{3}-\frac{11}{18}=\frac{1\times9-2\times12-11\times2}{36}=\frac{-37}{36}\)
d) MC: 312
\(\frac{1}{4}+\frac{5}{12}-\frac{1}{13}-\frac{7}{8}=\frac{1\times78+5\times26-1\times24-7\times39}{312}=\frac{-89}{312}\)
Bài 1:
\(N=\dfrac{1}{5}+\dfrac{1}{5}\left(\dfrac{1}{5}-\dfrac{1}{10}+...+\dfrac{1}{2005}-\dfrac{1}{2010}\right)\)
\(=\dfrac{1}{5}+\dfrac{1}{5}\cdot\dfrac{401}{2010}=\dfrac{2411}{10050}\)
BÀI 2 :
Số tự nhiên chia hết cho 5 là số có tận cùng là 5 hoặc 0.
Vì A là số thập phân nên chữ số tận cùng ko thể là 0. Vậy chữ số tận cùng của A là 5.
Tổng 3 chữ số còn lại là:
31-5=26
Nếu 3 chữ số đó đều là 9 thì tổng 3 chữ số đó là:
9×3=27
Tổng tăng lên :
27-26=1
Vậy phải có 1 chữ số là 9-1=8.
Suy ra A có thể là:
– 899,5
– 989,5
– 998,5
b)
ab chia 5 dư 2 thì b chỉ có thể là 7 hoặc 2.
Những số tự nhiên có 2 chữ số có tận cùng là 2 và chia hết cho 9 là 72.
Những số tự nhiên có 2 chữ số có tận cùng là 7 và chia hết cho 9 là 27.
Vậy ab =27;72.
\(\frac{1}{1x2}+\frac{1}{2x3}+...+\frac{1}{999x1000}+1\)
\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{999}-\frac{1}{1000}+1\)
\(=2-\frac{1}{1000}=\frac{1999}{1000}\)
\(\frac{3}{1.2}+\frac{3}{2.3}+\frac{3}{3.4}+\frac{3}{4.5}+\frac{3}{5.6}+...+\frac{3}{9.10}+\frac{77}{2.9}+\frac{77}{9.16}+\frac{77}{16.23}+...+\frac{77}{93.100}\)
Gọi \(\left(\frac{3}{1.2}+\frac{3}{2.3}+\frac{3}{3.4}+......+\frac{3}{9.10}\right)\)là \(A\); \(\left(\frac{77}{2.9}+\frac{77}{9.16}+\frac{77}{16.23}+...+\frac{77}{93.100}\right)\)là B . Ta có :
\(A=\frac{3}{1}.\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}\right)\)
\(A=\frac{3}{1}.\left(\frac{1}{1}-\frac{1}{10}\right)\)
\(A=\frac{3}{1}\cdot\frac{9}{10}=\frac{27}{10}\)
\(B=\frac{77}{7}\left(\frac{1}{2}-\frac{1}{9}+\frac{1}{6}-\frac{1}{16}+\frac{1}{16}-\frac{1}{23}+....+\frac{1}{93}-\frac{1}{100}\right)\)
\(B=\frac{77}{7}\left(\frac{1}{2}-\frac{1}{100}\right)\)
\(B=\frac{77}{7}\cdot\frac{49}{100}=\frac{539}{100}\)
\(\Rightarrow\frac{3}{1.2}+\frac{3}{2.3}+\frac{3}{3.4}+\frac{3}{4.5}+...+\frac{3}{9.10}+\frac{77}{2.9}+\frac{77}{9.16}+\frac{77}{16.23}+...+\frac{77}{93.100}=\frac{27}{10}+\frac{539}{100}=\frac{809}{100}\)
\(\frac{4}{3.6}+\frac{4}{6.9}+\frac{4}{9.12}+\frac{4}{12.15}\)
\(=\frac{4}{3}\cdot\left(\frac{1}{3}-\frac{1}{6}+\frac{1}{6}-\frac{1}{9}+\frac{1}{9}-\frac{1}{12}+\frac{1}{12}-\frac{1}{15}\right)\)
\(=\frac{4}{3}\cdot\left(\frac{1}{3}-\frac{1}{15}\right)\)
\(=\frac{4}{3}\cdot\frac{4}{15}=\frac{16}{45}\)
\(A=\frac{1}{32}+\frac{1}{33}+\frac{1}{34}+...+\frac{1}{90}\)
Tổng trên có số số hạng là: \(\left(90-32\right)\div1+1=59\)
\(\frac{1}{32}+\frac{1}{33}+\frac{1}{34}+...+\frac{1}{90}\)
\(>\frac{1}{45}+\frac{1}{90}+\frac{1}{90}+...+\frac{1}{90}\)
\(=\left(\frac{1}{90}+\frac{1}{90}\right)+\frac{1}{90}+\frac{1}{90}+...+\frac{1}{90}\)
\(=\frac{60}{90}=\frac{2}{3}\)
\(\frac{1}{2\times3}+\frac{1}{3\times4}+...+\frac{1}{n\times\left(n+1\right)}=\frac{49}{100}\)
\(\Rightarrow\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n}-\frac{1}{n+1}=\frac{49}{100}\)
\(\Rightarrow\frac{1}{2}-\frac{1}{n+1}=\frac{49}{100}\)
\(\Rightarrow\frac{n+1-2}{2\left(n+1\right)}=\frac{49}{100}\)
\(\Rightarrow\frac{n-1}{2n+2}=\frac{49}{100}\)
\(\Rightarrow100\left(n-1\right)=49\left(2n+2\right)\)
\(\Rightarrow100n-100=98n+98\)
\(\Rightarrow2n=198\)
=> n = 99
Vậy n = 99
\(\frac{1}{2}\)-\(\frac{1}{3}\)+\(\frac{1}{3}\)-\(\frac{1}{4}\)+....+\(\frac{1}{n}\)-\(\frac{1}{n+1}\)=\(\frac{49}{100}\)
\(\frac{1}{2}\)-\(\frac{1}{n+1}\)=\(\frac{49}{100}\)
\(\frac{1}{n+1}\)=\(\frac{1}{2}\)-\(\frac{49}{100}\)
\(\frac{1}{n+1}\)=\(\frac{1}{100}\)
=> n+1=100
n=100-1
n=99
A=\(\frac{1}{1.300}+\frac{1}{2.301}+\frac{1}{3.302}+...+\frac{1}{101.400}\)
299.A= 299.(\(\frac{1}{1.300}+\frac{1}{2.301}+\frac{1}{3.302}+...+\frac{1}{101.400}\))
299.A=\(\frac{299}{1.300}+\frac{299}{2.301}+\frac{299}{3.302}+...+\frac{299}{101.400}=\frac{1}{1}-\frac{1}{300}+\frac{1}{2}-\frac{1}{301}+...+\frac{1}{101}-\frac{1}{400}\)
A= \(=\frac{1}{299}\left(1+\frac{1}{2}+...+\frac{1}{101}-\frac{1}{300}-\frac{1}{301}-...-\frac{1}{400}\right)\)
Tương tự
B=\(\frac{1}{101}.\left(\frac{1}{1}-\frac{1}{102}+\frac{1}{2}-\frac{1}{103}+...+\frac{1}{299}-\frac{1}{400}\right)\)
B= \(\frac{1}{101}.\left(\frac{1}{1}+\frac{1}{2}...+\frac{1}{299}-\frac{1}{102}-\frac{1}{103}-...-\frac{1}{400}\right)\)
B= \(\frac{1}{101}.\left(\frac{1}{1}+\frac{1}{2}...+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{299}-\frac{1}{102}-\frac{1}{103}-...-\frac{1}{400}\right)\)
B= \(\frac{1}{101}.\left(\frac{1}{1}+\frac{1}{2}...+\frac{1}{101}-\frac{1}{300}-\frac{1}{301}-...-\frac{1}{400}\right)\)
Hai dấu ngoặc ở biểu thức A và biểu thức B như nhau
Vậy \(A:B=\frac{1}{299}:\frac{1}{101}=\frac{101}{299}\)
\(N=\frac{1}{1x5}+\frac{1}{5x10}+...+\frac{1}{2005x2010}\)
\(\Rightarrow5N=\frac{5}{1x5}+\frac{5}{5x10}+\frac{5}{10x15}+...+\frac{5}{2005x2010}\)
\(\Rightarrow5N=1-\frac{1}{5}-\frac{1}{10}+\frac{1}{10}-\frac{1}{15}+...+\frac{1}{2005}-\frac{1}{2010}\)
\(\Rightarrow5N=1-\frac{1}{5}-\frac{1}{2010}\)
\(\Rightarrow5N=\frac{4}{5}-\frac{1}{2010}\)
\(\Rightarrow5N=\frac{1607}{2010}\)
\(\Rightarrow N=\frac{1607}{10050}\)
Nhấn đúng cho mk nha!!!!!!!!!
\(=\frac{1}{1}-\frac{1}{5}+\frac{1}{5}-\frac{1}{10}+..........+\frac{1}{2005}-\frac{1}{2010}\)
\(=\frac{1}{1}-\frac{1}{2010}\)
\(=\frac{2009}{2010}\)