K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 2 2017

1+1/1 - 1/1000 = tự tính nhé

12 tháng 2 2017

\(\frac{1}{1x2}+\frac{1}{2x3}+...+\frac{1}{999x1000}+1\)

\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{999}-\frac{1}{1000}+1\)

\(=2-\frac{1}{1000}=\frac{1999}{1000}\)

20 tháng 1 2017

minh ko biet xin loi bn nha!

minh ko biet xin loi bn nha!

minh ko biet xin loi bn nha!

minh ko biet xin loi bn nha!

25 tháng 5 2018

a) \(\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+\frac{1}{9.10}\)

\(=\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}\)

\(=\frac{1}{5}-\frac{1}{10}\)

\(=\frac{1}{10}\)

b) \(\frac{2}{10.12}+\frac{2}{12.14}+\frac{2}{14.16}+...+\frac{2}{998.1000}\)

\(=\frac{1}{10}-\frac{1}{12}+\frac{1}{12}-\frac{1}{14}+\frac{1}{14}-\frac{1}{16}+...+\frac{1}{998}-\frac{1}{1000}\)

\(=\frac{1}{10}-\frac{1}{1000}\)

\(=\frac{99}{1000}\)

c) \(\frac{4}{1.2}+\frac{4}{2.3}+\frac{4}{3.4}+...+\frac{4}{69.90}\)

\(=4.\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{89.90}\right)\)

\(=4.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{89}-\frac{1}{90}\right)\)

\(=4.\left(1-\frac{1}{90}\right)\)

\(=4.\frac{89}{90}\)

\(=\frac{178}{45}\)

_Chúc bạn học tốt_

25 tháng 5 2018

a, \(=\frac{1}{10}\)

10 tháng 9 2017

\(G=1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}\)

\(G=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^5}\)

\(3G=3+1+\frac{1}{3}+...+\frac{1}{3^4}\)

\(3G-G=\left(3+1+...+\frac{1}{3^4}\right)-\left(1+\frac{1}{3}+...+\frac{1}{3^5}\right)\)

\(2G=3-\frac{1}{3^5}\)

\(2G=3-\frac{1}{243}\)

\(2G=\frac{729}{243}-\frac{1}{243}\)

\(G=\frac{728}{243}:2\)

\(G=\frac{364}{243}\)

\(\frac{3}{1.2}+\frac{3}{2.3}+...+\frac{3}{x.\left(x+1\right)}=\frac{6042}{2015}\)

\(3.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{6042}{2015}\)

\(1-\frac{1}{x+1}=\frac{6042}{2015}:3\)

\(1-\frac{1}{x-1}=\frac{2014}{2015}\)

\(\frac{1}{x-1}=1-\frac{2014}{2015}\)

\(\frac{1}{x-1}=\frac{1}{2015}\)

\(\Rightarrow x-1=2015\)

\(\Rightarrow x=2016\)

31 tháng 8 2020

\(C=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2017}-\frac{1}{2018}\)

\(C=1-\frac{1}{2018}\)

\(C=\frac{2017}{2018}\)

31 tháng 8 2020

\(C=\frac{1}{1x2}+\frac{1}{2x3}+\frac{1}{3x4}+.....+\frac{1}{2017x2018}\)

Ta thấy \(\frac{1}{1x2}=\frac{1}{1}-\frac{1}{2}\)

               \(\frac{1}{2x3}=\frac{1}{2}-\frac{1}{3}\)

      .............................................

           \(\frac{1}{2017x2018}=\frac{1}{2017}-\frac{1}{2018}\)

\(\Rightarrow C=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{2017}-\frac{1}{2018}\)

\(\Rightarrow C=\frac{1}{1}-\frac{1}{2018}\)

\(\Rightarrow C=\frac{2017}{2018}\)

Chúc bạn học tốt nhớ k mình nhá

6 tháng 11 2017

\(\frac{1}{1x2}+\frac{1}{2x3}+\frac{1}{3x4}+\frac{1}{4x5}+...+\frac{1}{8x9}\)

=\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{8}-\frac{1}{9}\)

=\(1-\frac{1}{9}\)

=\(\frac{8}{9}\)

OK XONG NHỚ CHO MIK NHA

6 tháng 11 2017

\(\frac{1}{1\times2}+\frac{1}{2x3}+\frac{1}{3x4}+\frac{1}{4x5}+.......+\frac{1}{7x8}+\)\(\frac{1}{8x9}\)

=1-\(\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+.....+\frac{1}{8}-\frac{1}{9}\)

=1-\(\frac{1}{9}\)

=\(\frac{8}{9}\)

15 tháng 1 2022

TL

Hình như là 501/1000

HT

15 tháng 1 2022

sai rồi bn e

5 tháng 6 2018

\(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{15.16}\)

\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{15}-\frac{1}{16}\)

\(=1-\frac{1}{16}=\frac{15}{16}\)

5 tháng 6 2018

\(\frac{1}{1x2}+\frac{1}{2x3}+...+\frac{1}{15x16}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{15}-\frac{1}{16}\)

\(=1-\frac{1}{16}\)

\(=\frac{15}{16}\)

9 tháng 9 2017

\(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{x.\left(x+1\right)}\)\(=\frac{24}{50}\)

\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x.1}\)=\(\frac{24}{50}\)

=\(\frac{1}{2}-\frac{1}{x.1}=\frac{24}{50}\)

=\(\frac{1}{x.1}=\frac{1}{2}-\frac{24}{50}\)

=\(\frac{1}{x.1}=\frac{1}{50}\)

\(\Rightarrow\)\(x.1=50\)

\(\Rightarrow x=50\)

29 tháng 4 2019

\(1+\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2017.2018}\)

\(=1+\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2017}-\frac{1}{2018}\right)\)

\(=1+\left(1-\frac{1}{2018}\right)\)

\(=1+\left(\frac{2018}{2018}-\frac{1}{2018}\right)\)

\(=1+\left(\frac{2017}{2018}\right)\)

\(=\frac{2018}{2018}+\frac{2017}{2018}=\frac{4035}{2018}\)

1 tháng 5 2019

\(1+\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}...+\frac{1}{2017\cdot2018}\)

\(=1+\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}...+\frac{1}{2017}-\frac{1}{2018}\right)\)

\(=1+\left(1-\frac{1}{2018}\right)\)

\(=1+\frac{2017}{2018}\)

\(=1+\frac{2017}{2018}\)

\(=\frac{4035}{2018}\)