Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Vẽ ảnh A'B'
A B A' B' F F' O I
b,
Gọi khoảng cách từ AB đến thấu kính là d, từ A'B' đến thấu kính là d'
Xét \(\Delta ABO \sim \Delta A'B'O\)
\(\Rightarrow \dfrac{AB}{A'B'}=\dfrac{BO}{B'O}=\dfrac{10}{d'}\)(1)
Xét \(\Delta IOF \sim \Delta A'B'F\)
\(\Rightarrow \dfrac{IO}{A'B'}= \dfrac{OF}{B'F}\)
Ta có: \(IO=AB\)
\(\Rightarrow \dfrac{AB}{A'B'}= \dfrac{14}{d'+14}\)(2)
Từ (1) và (2) \(\Rightarrow\dfrac{10}{d'}=\dfrac{14}{d'+14}\)
\(\Rightarrow d'=35cm\)
Vậy ảnh cách thấu kính 35 cm
Thế vào (1) ta được: \(\Rightarrow \dfrac{AB}{A'B'}=\dfrac{10}{35}\Rightarrow A'B' = \dfrac{35.2}{10}=7(cm)\)
Vậy ảnh cao 7cm.
a) vì là TKHT mà theo đề thì ta có d (tức là OA) < f ,=> ảnh ảo, cùng chiều và lớn hơn vật
b)Xét tam giác OAB đồng dạng vs ta, giác OA'B'
=> h/h' = d/d' (AB/A'B'=OA/OA')..........(1)
xét tam giac F'OI đồng dạng vs tgiac F'A'B'
=> h/h' = f/(f+d') (( OI/A'B' = FO/(FO+FA')))..........(2)
từ 1 và 2 => d/d' =f/(f+d')
chia 2 vế cho dd'f => 1/d =1/f + 1/d'
theo đề có d và f => d'=12
thế d'=12, d=6, h=1 vào (1)
=>h'=2
F' A O A' B' I
a. Thấu kính này là TLHT vì ảnh ngược chiều vs vật...cho ảnh thật,,...
b. hình tự vẽ...
f= OF = OF'= 4.8 cm
MÌNH THAM KHẢO NHÉ
a) Xét △ABO và △A′B′O có:
ABOˆ=A′B′Oˆ=900
BOAˆ=B′OA′ˆ (hai góc đối đỉnh)
⇒ Hai tam giác ABO và A'B'O là hai tam giác đồng dạng
⇒ \(\frac{A'B'}{AB}=\frac{B'O}{BO}\)
⇒ Độ phóng đại ảnh \(k=\frac{A'B'}{AB}=\frac{h'}{h}=\frac{d'}{d}\)
b) Tương tự: Hai tam giác A'B'F' và IOF' là hai tam giác đồng dạng
⇒\(\text{ }\frac{B'F'}{OF'}=\frac{A'B'}{IO}=\frac{d'}{d}\)
Áp dụng tính chất của tỉ lệ thức: \(\frac{B'F'+OF'}{OF'}=\frac{d'+d}{d}\)hay \(\frac{d'}{f}=\frac{d'+d}{d}\)
⇒\(\frac{1}{f}=\frac{1}{d}=\frac{1}{f'}\)
CÓ MẤY CÁI KÍ HIỆU GÓC, MÌNH KHÔNG BIẾT VIẾT, BẠN THÔNG CẢM
a) Xét \(\Delta ABO\) và \(\Delta A'B'O'\)
\(ABO=A'B'O=90^0\)
\(BOA=B'O'A\)( hai góc đối đỉnh )
\(\Rightarrow\)Hai tam giác ABO và A'B'O là hai tam giác đồng dạng
\(\Rightarrow\frac{A'B}{AB}=\frac{B'O}{BO}\)
\(\Rightarrow\)Độ phóng đại ảnh : \(k=\frac{A'B}{AB}=\frac{h'}{h}=\frac{d'}{d}\)
b) Tương tự : Hai tam giác A'B'F và IOF' là hai tam giác đồng dạng
\(\Rightarrow\frac{B'F'}{OF}=\frac{A'B}{TO}=\frac{d'}{d}\)
Dựa vào tính chất của tỉ lệ thức : \(\frac{B'F'+OF'}{OF'}=\frac{d'+d}{d}\)hay \(\frac{d'}{f}=\frac{d'+d}{d}\)
b) Khoảng cách từ ảnh đến thấu kính:
\(\dfrac{1}{f}=\dfrac{1}{d}+\dfrac{1}{d'}\: \: \)\(\Rightarrow\dfrac{1}{20}=\dfrac{1}{40}+\dfrac{1}{d'}\:\)
\(\Rightarrow\dfrac{1}{d'}=\dfrac{1}{20}-\dfrac{1}{40}\)
\(\Rightarrow d'=40\) (cm)
c) Chiều cao của ảnh:
\(\dfrac{h}{h'}=\dfrac{d}{d'}\) \(\Rightarrow\dfrac{10}{h'}=\dfrac{40}{40}\)
\(\Rightarrow h'=10\) (cm)
Đáp án D
Ảnh sẽ ngược chiều vật khi là ảnh thật, và khi đó vật phải đặt ngoài tiêu cự nghĩa là tiêu cự của thấu kính nhỏ hơn 15cm. Trong các kết quả trên chỉ có D thỏa mãn.