Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Khoảng cách từ ảnh đến thấu kính:
\(\dfrac{1}{f}=\dfrac{1}{d}+\dfrac{1}{d'}\Rightarrow\dfrac{1}{20}=\dfrac{1}{30}+\dfrac{1}{d'}\Leftrightarrow d'=60cm\)
Độ cao ảnh:
\(\dfrac{h}{h'}=\dfrac{d}{d'}\Rightarrow\dfrac{2}{h'}=\dfrac{30}{60}\Rightarrow h'=4cm\)
AB = 2cm
OA = 15cm
OF = 10cm
a. Hình vẽ tham khảo ảnh
b. Ta có 1/A'O = 1/OF - 1/AO = 1/10 - 1/15 = 1/30 hay A'O = 30cm
Vì A'B'/AB = A'O/AO nên A'B' = (AB.A'O)/AO = (2.30)/15 = 4cm
Vậy ảnh cao 4cm và cách thấu kính một đoạn 30cm
(Cách chứng minh như trong hình vẽ)
a) Xem hình vẽ dưới đây
b) Theo hình trên ta đo được chiều cao của vật AB = 7 mm, chiều cao của ảnh A'B' = 21 mm = 3AB.
Hai tam giác OAB và OA'B' đồng dạng với nhau nên
= (1)
Hai tam giác F'OI và F'A'B' đồng dạng với nhau nên
= = = = - 1. (2)
Từ (1) và (2) ta có:
= - 1
Thay các giá trị số đã cho: OA = 16 cm, OF' = 12 cm thì ta tính được OA' = 48 cm hay OA' = 3OA, từ đó tính được A'B' = 3AB, ảnh cao gấp 3 lần vật.
Hướng dẫn học sinh chọn một tỉ lệ xích thích hợp, chẳng hạn lấy tiêu cự 3 cm thì vật AB cách thấu kính 4 cm, còn chiều cao của AB là một số nguyên lần milimet, ở đây ta lấy AB là 7 cm.
a) Xem hình vẽ dưới đây
b) Theo hình trên ta đo được chiều cao của vật AB = 7 mm, chiều cao của ảnh A'B' = 21 mm = 3AB.
- Nhìn vào hình để tính xem chiều cao của vật gấp mấy lần chiều cao của ảnh.
Hai tam giác OAB và OA'B' đồng dạng với nhau nên
= (1)
Hai tam giác F'OI và F'A'B' đồng dạng với nhau nên
= = = = - 1. (2)
Từ (1) và (2) ta có:
= - 1
Thay các giá trị số đã cho: OA = 16 cm, OF' = 12 cm thì ta tính được OA' = 48 cm hay OA' = 3OA, từ đó tính được A'B' = 3AB, ảnh cao gấp 3 lần vật.
a. Bạn tự vẽ ( ảnh ảo )
b. Xét tam giác \(OAB\sim\) tam giác \(OA'B'\)
\(\dfrac{OA}{OA'}=\dfrac{AB}{A'B'}=\dfrac{OI}{A'B'}\) ( do OI = AB ) (1)
Xét tam giác \(OIF'\sim\) tam giác \(A'B'F'\)
\(\dfrac{OI}{A'B'}=\dfrac{OF'}{A'F'}\) (2)
\(\left(1\right);\left(2\right)\Rightarrow\dfrac{OA}{OA'}=\dfrac{OF'}{A'F'}=\dfrac{OF'}{OA'+OF'}\)
\(\Leftrightarrow\dfrac{8}{OA'}=\dfrac{12}{OA'+12}\)
\(\Leftrightarrow OA'=24\left(cm\right)\)
Thế \(OA'=24\) vào \(\left(1\right)\Leftrightarrow\dfrac{1}{A'B'}=\dfrac{8}{24}\)
\(\Leftrightarrow A'B'=3\left(cm\right)\)