Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tóm tắt:
s1 = s2
v1 = 15 km/h
v2 = 10 km/h
__________
vtb = ? (km/h)
Giải:
Thời gian trên nửa quãng đường đầu:
\(v_1=\frac{s_1}{t_1}\Rightarrow t_1=\frac{s_1}{v_1}=\frac{s_1}{15}\left(h\right)\)
Thời gian trên nửa quãng đường sau:
\(v_2=\frac{s_2}{t_2}\Rightarrow t_2=\frac{s_2}{v_2}=\frac{s_1}{10}\left(h\right)\)
Vận tốc trung bình trên cả quãng đường AB:
\(v_{tb}=\frac{s_1+s_2}{t_1+t_2}=\frac{s_1+s_1}{\frac{s_1}{15}+\frac{s_1}{10}}=\frac{2s_1}{s_1\left(\frac{1}{15}+\frac{1}{10}\right)}=\frac{2}{\frac{1}{6}}=12\) (km/h)
ĐS: 12 km/h
tóm tắt: v1=15km/h BL
v2=10km/h Vận tốc trung bình người đó đi trên cả quãng đường AB là:
vtb=? vtb=( 2*v1*v2 ) / ( v1 + v2) =(2*15*10) / (15+10)=12 km/h
Vậy vận tốc trung bình trên cả quãng đường AB là 12 km/h
Sau khi đi được 15p xe máy đến C cách A 10km gặp xe ô tô. Ô tô đến A vs thời gian t=10/60=1/6(h) Ô tô nghỉ 30 phút tổng thời gian là 1/6+1/2=2/3(h)
Đặt D là điểm cách B 25km nơi 2 xe gặp nhau. Đặt X là độ dài đoạn CD. Thời gian xe máy đi từ C đến D từ khi gặp xe ô tô là X/40. Thời gian xe ô tô đi từ khi gặp xe máy lần 1 đến khi gặp xe máy lần 2 là: 2/3+(X+10)/60. Ta có 2/3+(X+10)/60=X/40
Giải phương trình trên ta được X=100. Trường hợp D nằm giữa C và B thì độ dài đoạn AB bằng 135km Trường hợp B nằm giữa C và D thì độ dài đoạn AB bằng 85km. Vì xe máy ko đi quá B nên loại trường hợp B nằm giữa C và D vậy dộ dài đoạn AB là 135km
đề bài cho 3 điều kiện
bạn phải xét đó là những điều kiện nào
điều kiện nào phù hợp với điều kiện nào
chẳng hạn V.T
rồi lấy V.T ra quãng d9uo2ng AB
hoành độ giao điểm là nghiệm của pt
\(x^3-3mx^2+3\left(2m-1\right)x+1=2mx-4m+3\Leftrightarrow x^3-3mx^2+4mx-3x-2+4m=0\Leftrightarrow x^3-3x-2-m\left(3x^2-4x+4\right)=0\)
giải hệ pt ta có \(C_m\) luôn đi qua điểm A là nghiệm của hệ pt sau
\(\begin{cases}3x^2-4x+4=0\\x^3-3x-2=0\end{cases}\)
ta đc điều phải cm
vì (C) đi qua điểm A nên tọa độ điểm A thỏa mãn pt \(y=\frac{ax^2-bx}{x-1}\) ta có \(\frac{5}{2}=\frac{a+b}{-2}\Rightarrow a+b=-5\)
vì tiếp tuyến của đồ thị tại điểm O có hệ số góc =-3 suy ra y'(O)=-3
ta có \(y'=\frac{ax^2-2ax+b}{\left(x-1\right)^2}\) ta có y'(O)=b=-3 suy ra a=-2
vậy ta tìm đc a và b
Vận tốc xe 2=v, vận tốc xe 1=4/3.v
Sau 6 giờ xe 2 và xe 1 đi được quãng đường là 6v và 6.4/3.v=8v.
Do đó là thời điểm 2 xe gặp nhau nên AB=6v+8v=14v
Thời gian để xe 2 và xe 1 đến chính giữa quãng đường AB là :
7v/v=7 giờ và 7v/(4/3.v)=5,25 giờ=5 giờ 15 phút
Vậy để 2 xe gặp nhau ở chính giữa AB thì xe 1 xuất phát sau xe 2 khoảng thời gian là 1 giờ 45 phút
like nhé
Đáp án C.