Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án C.
Gọi R 1 = r là bán kính đường tròn đáy của hình nón và cũng là bán kính mặt đáy của thùng.
Khi đó R 2 = 2 r là bán kính của miệng thùng và phễu, thùng có cùng chiều cao h = 20 cm.
Thể tích của thùng là V 1 = 1 3 πh R 1 2 + R 2 2 + R 1 R 2 = 1 2 . π . 20 . r 2 + 4 r 2 + r . 2 r = 140 π 3 . r 2 cm 3 .
Thẻ tích của phễu hình nón là V 2 = 1 3 πR 1 2 h = 1 3 . π . r 2 . 20 = 20 π 3 . r 2 cm 3 .
Vậy thể tích khối nước là V = V 1 - V 2 = 40 πr 2 = 4000 ⇒ r = 100 π ≈ 5 , 64 cm .
Đáp án A.
Diện tích cần tính gồm diện tích xung quanh hình trụ và diện tích xung quanh hình nón.
Đáp án C
Thể tích của khối nón là V n = 1 3 π r 2 h 1 và độ dài đường sinh là l = r 2 + h 2
Thể tích của khối trụ là V t = π r 2 h 2 = 1 3 π r 2 h
Vậy thể tích cái nắp là V = V n + V t = 2 3 π r 2 h
Mặt khác l =1,25
⇒ r 2 + h 2 = 25 4 ⇔ r 2 = 25 4 − h 2
khi đó:
V = 2 3 π h 25 4 − h 2 ≤ 2 π 3 . 125 12 3
Ta có:
V 2 = 4 9 π 2 h 2 25 4 − h 2 2 ≤ 2 9 π 2 . 25 4 − h 2 . 25 4 − h 2 2 9 π 2 . 25 4 − h 2 . 25 4 − h 2 ≤ 2 π 2 9 . 25 4 + 25 4 3 3
Dấu bằng xảy ra khi:
2 h 2 = 25 4 − h 2 ⇔ h 2 = 25 12 ⇒ h = 5 2 3
Dấu “=” xảy ra khi:
2 h 2 = 25 4 − h 2 ⇔ h 2 = 25 12 ⇒ h = 5 2 3 ⇒ r = 25 4 − h 2 = 5 6 6 ⇒ r + h ≃ 348 c m
Đáp án C
Gọi V là thể tích của phễu. Khi đó thể tích nước trong bình là
Áp dụng định lí Pytago ta tính được
Nửa chu vi tam giác ABC là
Do khối cầu nằm vừa khít trong hình nón nên bán kính cầu chính bằng bán kính đường tròn nội tiếp tam giác SAB.
Thể tích khối cầu chính bằng thể tích phần nước dâng lên trong hình trụ có bán kính đáy R.
Gọi h là chiều cao cột nước dâng lên ta có
Chọn A.