K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Y
18 tháng 4 2019

\(\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)...\left(1-\frac{1}{2011}\right)\)

\(=\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot...\cdot\frac{2010}{2011}\)

\(=\frac{1}{2011}\)

18 tháng 4 2019

\(\left(1-\begin{matrix}1\\2\end{matrix}\right)\) \(\left(\begin{matrix}1&-\begin{matrix}1\\3\end{matrix}\end{matrix}\right)\) \(\left(1-\begin{matrix}1\\4\end{matrix}\right)\) ... \(\left(1-\begin{matrix}1\\2011\end{matrix}\right)\)

= \(\frac{1}{2}\) x \(\frac{2}{3}\) x \(\frac{3}{4}\) x ... x \(\frac{2010}{2011}\)

= \(\frac{1.2.3....2010}{2.3.4....2011}\)

= \(\frac{1}{2011}\)

14 tháng 6 2016

\(A=\frac{3}{4}.\frac{8}{9}.\frac{15}{16}...\frac{120}{121}=\frac{3.8.15...120}{4.9.16...121}\)

    \(=\frac{\left(1.3\right).\left(2.4\right).\left(3.5\right)...\left(10.12\right)}{\left(2.2\right).\left(3.3\right).\left(4.4\right)...\left(11.11\right)}\)

    \(=\frac{\left(1.2.3...10\right).\left(3.4.5...12\right)}{\left(2.3.4...11\right).\left(2.3.4...11\right)}=\frac{1.12}{11.2}=\frac{6}{11}\)

14 tháng 6 2016

ta có :

A=\(\left(-\frac{3}{4}\right)\left(-\frac{8}{9}\right)\left(-\frac{15}{16}\right)...\left(-\frac{120}{121}\right)\)(có 10 số hạng)

  = \(\frac{3\cdot8\cdot15\cdot...\cdot120}{4\cdot9\cdot16\cdot...\cdot121}=\frac{\left(1.3\right)\left(2\cdot4\right)\left(3\cdot5\right)\cdot...\cdot\left(10\cdot12\right)}{2^2\cdot3^2\cdot4^2\cdot...\cdot11^2}=\frac{\left(1\cdot2\cdot3\cdot...\cdot10\right)\left(3\cdot4\cdot5\cdot...\cdot12\right)}{\left(2\cdot3\cdot4\cdot..\cdot11\right)\left(2\cdot3\cdot4\cdot..\cdot11\right)}\)

=\(\frac{12}{11\cdot2}=\frac{12}{22}\)

28 tháng 10 2019

a)\(A=\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right)\left(1-\frac{1}{5}\right)...\left(1-\frac{1}{20}\right)\)

\(A=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}...\frac{19}{20}\)

\(A=\frac{1.2.3...19}{2.3.4...20}\)

\(A=\frac{1}{20}\)

20 tháng 4 2019

\(M=\left(\frac{1}{2}-1\right)\left(\frac{1}{3}-1\right)\left(\frac{1}{4}-1\right)...\left(\frac{1}{2011}-1\right)\)

\(M=-\frac{1}{2}.-\frac{2}{3}.-\frac{3}{4}...-\frac{2010}{2011}\)

\(M=-\frac{1}{2011}\)

7 tháng 9 2019

M =-1/2011

13 tháng 7 2020

bài 1 tắt quá

13 tháng 7 2020

Câu 1:

Đặt: \(A=\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+\frac{1}{6^2}+....+\frac{1}{100^2}\)

\(=\frac{1}{3.3}+\frac{1}{4.4}+\frac{1}{5.5}+\frac{1}{6.6}+....+\frac{1}{100.100}\)

\(A< \frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+.....+\frac{1}{99.100}\)

\(\Rightarrow A< \frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+....+\frac{1}{99}-\frac{1}{100}\)

\(\Rightarrow A< \frac{1}{2}-\frac{1}{100}\)

\(\Rightarrow A< \frac{49}{100}< \frac{50}{100}=\frac{1}{2}\)

\(\Rightarrow A< \frac{1}{2}\)

Vậy:.............

Câu 2:

\(\left(\frac{1}{2}+1\right)\left(\frac{1}{3}+1\right)\left(\frac{1}{4}+1\right)...\left(\frac{1}{98}+1\right)\left(\frac{1}{99}+1\right)\)

\(=\left(\frac{1}{2}+\frac{2}{2}\right)\left(\frac{1}{3}+\frac{3}{3}\right)\left(\frac{1}{4}+\frac{4}{4}\right)...\left(\frac{1}{98}+\frac{98}{98}\right)\left(\frac{1}{99}+\frac{99}{99}\right)\)

\(=\frac{3}{2}.\frac{4}{3}.\frac{5}{4}....\frac{99}{98}.\frac{100}{99}\)

\(=\frac{3.4.5....99.100}{2.3.4...98.99}\)

\(=\frac{100}{2}=50\)

29 tháng 3 2017

a) \(=\frac{3}{2}.\frac{4}{3}....\frac{100}{99}=\frac{100}{2}=50\)

29 tháng 3 2017

a) =3/2 . 4/3 . 5/4 ...100/99

   =\(\frac{3.4.5...100}{2.3.4..99}\)

  =\(\frac{100}{2}\)

b) =