Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B
từ 1 đến 2012 có tất cả:
2012-1:1+1 = 2012 (số)
=>có: 2012:2 = 1006 (cặp)
Mà mỗi cặp bằng (-1)nên
tổng dãy số trên là: 1006 . (-1) = -1006
(1-2)+(2-3)+(3-4)+(5-6)+...+(2011-2012)
=-1+(-1)+(-1)+(-1)+...+(-1)
có tất cả các số -1 trên dãy số trên là
(2012-2);2+1=1006
vậy suy ra ; -1x1006=(-1006)
chac chan la dung
Câu 1 :
A = (2012+2) . [ ( 2012-2) : 3+1 ] : 2 = 2014 . 671 : 2 = 675697
B = \(\frac{1}{2}\). \(\frac{2}{3}\). \(\frac{3}{4}\)+...+ \(\frac{2010}{2011}\). \(\frac{2011}{2012}\)= \(\frac{1.2.3.....2010.2011}{2.3.4.....2011.2012}\)= \(\frac{1}{2012}\)
Câu 2 :
a) \(2x.\left(3y-2\right)+\left(3y-2\right)=-55\)
=> \(\left(3y-2\right).\left(2x+1\right)=-55\)
=> \(3y-2;2x+1\in\: UC\left(-55\right)\)
=> \(3y-2;2x+1=\left\{1;-1;5;-5;11;-11;55;-55\right\}\)
- Vậy ta có bảng
\(2x+1\) | 1 | -1 | 5 | -5 | 11 | -11 | 55 | -55 |
\(x\) | 0 | -1 | 2 | -3 | 5 | -6 | 27 | -28 |
\(3y-2\) | -55 | 55 | -11 | 11 | -5 | 5 | -1 | 1 |
\(3y\) | -53 | 57 | -9 | 13 | -3 | 7 | 1 | 3 |
\(y\) | \(\frac{-53}{3}\)(loại) | 19(chọn) | -3(chọn) | \(\frac{13}{3}\)(loại) | -1(chọn) | \(\frac{7}{3}\)(loại) | \(\frac{1}{3}\)(loại) | 1(chọn) |
\(\Leftrightarrow\)Những cặp (x;y) tìm được là :
(-1;19) ; (2;-3) ; (5;-1) ; (-28;1)
b) Ta đặt vế đó là A
Ta xét A : \(\frac{1}{4^2}\)< \(\frac{1}{2.4}\)
\(\frac{1}{6^2}\)< \(\frac{1}{4.6}\)
\(\frac{1}{8^2}\)< \(\frac{1}{6.8}\)
...
\(\frac{1}{\left(2n\right)^2}\)< \(\frac{1}{\left(2n-2\right).2n}\)
\(\Leftrightarrow\)A < \(\frac{1}{2.4}\)+ \(\frac{1}{4.6}\)+...+ \(\frac{1}{\left(2n-2\right).2n}\)
\(\Leftrightarrow\)A < \(\frac{1}{2}\). ( \(\frac{2}{2.4}\)+ \(\frac{2}{4.6}\)+...+ \(\frac{2}{\left(2n-2\right).2n}\))
\(\Leftrightarrow\)A < \(\frac{1}{2}\). ( \(\frac{1}{2}\)- \(\frac{1}{4}\)+ \(\frac{1}{4}\)- \(\frac{1}{6}\)+...+ \(\frac{1}{2n-2}\)- \(\frac{1}{2n}\))
\(\Leftrightarrow\)A < \(\frac{1}{2}\). ( \(\frac{1}{2}\)- \(\frac{1}{2n}\)) = \(\frac{1}{2}\). \(\frac{1}{2}\)- \(\frac{1}{2}\). \(\frac{1}{2n}\)
\(\Leftrightarrow\)A < \(\frac{1}{4}\)- \(\frac{1}{4n}\)< \(\frac{1}{4}\) ( Vì n \(\in\)N )
\(\Leftrightarrow\)A < \(\frac{1}{4}\)( đpcm ) .
a) \(=\frac{3}{2}.\frac{4}{3}....\frac{100}{99}=\frac{100}{2}=50\)
a) =3/2 . 4/3 . 5/4 ...100/99
=\(\frac{3.4.5...100}{2.3.4..99}\)
=\(\frac{100}{2}\)
b) =
1) \(x-\left|1\frac{1}{6}\right|=\frac{5}{21}\)
\(\Rightarrow x-\frac{5}{21}=\left|1\frac{1}{6}\right|\)
\(\Rightarrow x-\frac{5}{21}=\frac{7}{6}\)
\(\Rightarrow x=\frac{7}{6}+\frac{5}{21}=\frac{49}{42}+\frac{10}{42}=\frac{59}{42}\)
2) \(x+\left|-1\frac{2}{3}\right|=\left|-\frac{3}{4}\right|\)
\(\Rightarrow x+\left|-1\frac{2}{3}\right|=\frac{3}{4}\)
\(\Rightarrow x-\frac{3}{4}=-\left|-1\frac{2}{3}\right|\)
\(\Rightarrow x-\frac{3}{4}=-1\frac{2}{3}\)
\(\Rightarrow x-\frac{3}{4}=-\frac{5}{3}\)
\(\Rightarrow x=-\frac{5}{3}+\frac{3}{4}=-\frac{11}{12}\)
3) \(\left|x-\frac{1}{3}\right|=\frac{5}{2}\)
\(\Rightarrow\left[{}\begin{matrix}x-\frac{1}{3}=\frac{5}{2}\\x-\frac{1}{3}=-\frac{5}{2}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\frac{5}{2}+\frac{1}{3}=\frac{17}{6}\\x=-\frac{5}{2}+\frac{1}{3}=-\frac{13}{6}\end{matrix}\right.\)
4) \(\left|x+\frac{2}{3}\right|=0\)
\(\Rightarrow x+\frac{2}{3}=0\)
\(\Rightarrow x=0-\frac{2}{3}=-\frac{2}{3}\)
5) \(\left|x+2\right|=\frac{1}{3}-\frac{1}{5}\)
\(\Rightarrow\left|x+2\right|=\frac{2}{15}\)
\(\Rightarrow\left[{}\begin{matrix}x+2=\frac{2}{15}\\x+2=-\frac{2}{15}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\frac{2}{15}-2=-\frac{28}{15}\\x=-\frac{2}{15}-2=-\frac{32}{15}\end{matrix}\right.\)
6) \(\left|x-4\right|=\frac{1}{5}-\left(\frac{1}{2}-\frac{5}{4}\right)\)
\(\Rightarrow\left|x-4\right|=\frac{19}{20}\)
\(\Rightarrow\left[{}\begin{matrix}x-4=\frac{19}{20}\\x-4=-\frac{19}{20}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\frac{19}{20}+4=\frac{99}{20}\\x=-\frac{19}{20}+4=\frac{61}{20}\end{matrix}\right.\)
7) \(\left|x-\frac{5}{4}\right|=-\frac{1}{3}\)
Vì \(\left|x-\frac{5}{4}\right|\ge0\)
=> Không có giá trị x thỏa mãn với điều kiện trên
\(\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)...\left(1-\frac{1}{2011}\right)\)
\(=\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot...\cdot\frac{2010}{2011}\)
\(=\frac{1}{2011}\)
\(\left(1-\begin{matrix}1\\2\end{matrix}\right)\) \(\left(\begin{matrix}1&-\begin{matrix}1\\3\end{matrix}\end{matrix}\right)\) \(\left(1-\begin{matrix}1\\4\end{matrix}\right)\) ... \(\left(1-\begin{matrix}1\\2011\end{matrix}\right)\)
= \(\frac{1}{2}\) x \(\frac{2}{3}\) x \(\frac{3}{4}\) x ... x \(\frac{2010}{2011}\)
= \(\frac{1.2.3....2010}{2.3.4....2011}\)
= \(\frac{1}{2011}\)
\(M=\left[\frac{1}{2}-1\right]\cdot\left[\frac{1}{3}-1\right]\cdot\left[\frac{1}{4}-1\right]\cdot...\cdot\left[\frac{1}{2011}-1\right]\)
\(M=\left[\frac{1}{2}-\frac{2}{2}\right]\cdot\left[\frac{1}{3}-\frac{3}{3}\right]\cdot\left[\frac{1}{4}-\frac{4}{4}\right]\cdot...\cdot\left[\frac{1}{2011}-\frac{2011}{2011}\right]\)
\(M=\frac{-1}{2}\cdot\frac{-2}{3}\cdot\frac{-3}{4}\cdot...\cdot\frac{-2010}{2011}\)
\(M=\frac{\left[-1\right]\cdot\left[-2\right]\cdot\left[-3\right]\cdot...\cdot\left[-2010\right]}{2\cdot3\cdot4\cdot...\cdot2011}\)
\(M=\frac{1\cdot2\cdot3\cdot...\cdot2010}{2\cdot3\cdot4\cdot...\cdot2011}=\frac{1}{2011}\)
\(M=\left(\frac{1}{2}-1\right)\left(\frac{1}{3}-1\right)\left(\frac{1}{4}-1\right)...\left(\frac{1}{2011}-1\right)\)
\(M=-\frac{1}{2}.-\frac{2}{3}.-\frac{3}{4}...-\frac{2010}{2011}\)
\(M=-\frac{1}{2011}\)
M =-1/2011