K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

c: \(\dfrac{1}{3}+\dfrac{1}{6}+...+\dfrac{2}{x\left(x+1\right)}=\dfrac{2021}{2022}\)

=>\(\dfrac{2}{6}+\dfrac{2}{12}+...+\dfrac{2}{x\left(x+1\right)}=\dfrac{2021}{2022}\)

=>\(2\left(\dfrac{1}{6}+\dfrac{1}{12}+...+\dfrac{1}{x\left(x+1\right)}\right)=\dfrac{2021}{2022}\)

=>\(2\left(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{x}-\dfrac{1}{x+1}\right)=\dfrac{2021}{2022}\)

=>\(2\left(\dfrac{1}{2}-\dfrac{1}{x+1}\right)=\dfrac{2021}{2022}\)

=>\(1-\dfrac{2}{x+1}=\dfrac{2021}{2022}\)

=>\(\dfrac{2}{x+1}=\dfrac{1}{2022}\)

=>x+1=4044

=>x=4043

d: \(\left(\dfrac{1}{1\cdot2\cdot3}+\dfrac{1}{2\cdot3\cdot4}+...+\dfrac{1}{8\cdot9\cdot10}\right)\cdot x=\dfrac{23}{45}\)

\(\Leftrightarrow\dfrac{1}{2}\left(\dfrac{2}{1\cdot2\cdot3}+\dfrac{2}{2\cdot3\cdot4}+...+\dfrac{2}{8\cdot9\cdot10}\right)\cdot x=\dfrac{23}{45}\)

=>\(x\cdot\dfrac{1}{2}\left(\dfrac{1}{1\cdot2}-\dfrac{1}{2\cdot3}+\dfrac{1}{2\cdot3}-\dfrac{1}{3\cdot4}+...+\dfrac{1}{8\cdot9}-\dfrac{1}{9\cdot10}\right)=\dfrac{23}{45}\)
=>\(\dfrac{x}{2}\cdot\left(\dfrac{1}{1\cdot2}-\dfrac{1}{9\cdot10}\right)=\dfrac{23}{45}\)

=>\(\dfrac{x}{2}\left(\dfrac{1}{2}-\dfrac{1}{90}\right)=\dfrac{23}{45}\)

=>\(\dfrac{x}{2}\cdot\dfrac{44}{90}=\dfrac{23}{45}\)

=>\(x\cdot\dfrac{22}{90}=\dfrac{23}{45}\)

=>\(x\cdot\dfrac{11}{45}=\dfrac{23}{45}\)

=>\(x=\dfrac{23}{45}:\dfrac{11}{45}=\dfrac{23}{11}\)

12 tháng 1 2024

2. Các cặp số đối với nhau là:

\(\dfrac{-5}{6}\) và \(\dfrac{5}{6}\)

\(\dfrac{-40}{-10}\) và \(\dfrac{40}{-10}\)

AH
Akai Haruma
Giáo viên
4 tháng 2 2024

Bài 5:

a. Gọi $d=ƯCLN(n-2, n+1)$

$\Rightarrow n-2\vdots d; n+1\vdots d$

$\Rightarrow (n+1)-(n-2)\vdots d$

$\Rightarrow 3\vdots d\Rightarrow d\in \left\{1; 3\right\}$
Để ps tối giản thì $n-2\not\vdots 3$

$\Leftrightarrow n\neq 3k+2$ với $k$ là số tự nhiên bất kỳ.

b.

Gọi $d=ƯCLN(n+5, n-2)$

$\Rightarrow n+5\vdots d; n-2\vdots d$

$\Rightarrow (n+5)-(n-2)\vdots d$

$\Rightarrow 7\vdots d$

$\Rightarrow d\in \left\{1; 7\right\}$

Để ps tối giản thì $n-2\not\vdots 7$

$\Rightarrow n\neq 7k+2$ với $k$ là số tự nhiên bất kỳ.

11 tháng 1 2024

Bài 2: 

Chiều cao trung bình của 8 bạn trong tổ 1 là:

       115 : 8 = \(\dfrac{115}{8}\) (dm)

Chiều cao trung bình của 10 bạn trong tổ 2 là:

      138 : 10 =  \(\dfrac{69}{5}\) (dm)

       \(\dfrac{115}{8}\) = \(\dfrac{115\times5}{8\times5}\) = \(\dfrac{575}{40}\) 

        \(\dfrac{69}{5}\) = \(\dfrac{69\times8}{5\times8}\) = \(\dfrac{552}{40}\)

       Vì \(\dfrac{575}{40}\) > \(\dfrac{552}{40}\)

Vậy chiều cao trung bình của các bạn tổ 1 lớn hơn chiều cao trung bình của các bạn tổ 2

11 tháng 1 2024

Bài 3:

a; \(\dfrac{-11}{5}\) < \(\dfrac{-10}{5}\) = -2

     \(\dfrac{-7}{4}\)  > \(\dfrac{-8}{4}\) = - 2

\(\Rightarrow\) \(\dfrac{-11}{5}\) < \(\dfrac{-7}{4}\)

b; \(\dfrac{2020}{-2021}\) > - 1

     \(\dfrac{-2022}{2021}\)  < -1

    Vậy \(\dfrac{2020}{-2021}\)  > \(\dfrac{-2022}{2021}\)

13 tháng 1 2024

Bài 4:

a; \(\dfrac{1}{4}\) - \(\dfrac{1}{5}\) = \(\dfrac{5}{20}\) - \(\dfrac{4}{20}\) = \(\dfrac{1}{20}\)

b; \(\dfrac{3}{5}\) - \(\dfrac{-1}{2}\) = \(\dfrac{6}{10}\) + \(\dfrac{5}{10}\) = \(\dfrac{11}{10}\)

c; \(\dfrac{3}{5}\) - \(\dfrac{-1}{3}\) = \(\dfrac{9}{15}\) + \(\dfrac{5}{15}\) = \(\dfrac{14}{15}\)

d; \(\dfrac{-5}{7}\) - \(\dfrac{1}{3}\)\(\dfrac{-15}{21}\) - \(\dfrac{7}{21}\)\(\dfrac{-22}{21}\)

13 tháng 1 2024

Bài 5

a; 1 + \(\dfrac{3}{4}\) = \(\dfrac{4}{4}\) + \(\dfrac{3}{4}\) = \(\dfrac{7}{4}\)       b; 1 - \(\dfrac{1}{2}\) = \(\dfrac{2}{2}\) - \(\dfrac{1}{2}\) = \(\dfrac{1}{2}\)

c; \(\dfrac{1}{5}\) - 2 = \(\dfrac{1}{5}\) - \(\dfrac{10}{5}\) = \(\dfrac{-9}{5}\)     d; -5 - \(\dfrac{1}{6}\) = \(\dfrac{-30}{6}\) - \(\dfrac{1}{6}\) = \(\dfrac{-31}{6}\)

e; - 3 - \(\dfrac{2}{7}\)\(\dfrac{-21}{7}\) - \(\dfrac{2}{7}\)\(\dfrac{-23}{7}\)     f; - 3 + \(\dfrac{2}{5}\) = \(\dfrac{-15}{5}\) + \(\dfrac{2}{5}\)= - \(\dfrac{13}{5}\)

g; - 3 - \(\dfrac{2}{3}\) = \(\dfrac{-9}{3}\) - \(\dfrac{2}{3}\) = \(\dfrac{-11}{3}\)     h; - 4 - \(\dfrac{-5}{7}\) = \(\dfrac{-28}{7}\)\(\dfrac{5}{7}\) = - \(\dfrac{23}{7}\)

1 tháng 2 2024

a; \(\dfrac{x-1}{12}\) = \(\dfrac{5}{3}\)

      \(x-1\) = \(\dfrac{5}{3}\) \(\times\) 12

      \(x\)  - 1  = 20

      \(x\)        = 20 + 1

      \(x\)        = 21

b;   \(\dfrac{-x}{8}\) = \(\dfrac{-50}{x}\)

     -\(x\).\(x\)  = -50.8

       -\(x^2\)  = -400

        \(x^2\) = 400

        \(\left[{}\begin{matrix}x=-20\\x=20\end{matrix}\right.\)

Vậy \(x\) \(\in\) {-20; 20}

1 tháng 2 2024

c; \(\dfrac{x}{3}\) = \(\dfrac{14}{x+1}\)

     \(x\).(\(x\)+1) =  14.3

     \(x^2\) + \(x\)  = 42

      \(x^2\) + \(x\) - 42 = 0

      \(x^2\) - 6\(x\) + 7\(x\) - 42  = 0

      \(x\).(\(x\) - 6) + 7.(\(x\) - 6) = 0

        (\(x\) - 6).(\(x\) + 7) = 0

         \(\left[{}\begin{matrix}x-6=0\\x+7=0\end{matrix}\right.\)

         \(\left[{}\begin{matrix}x=6\\x=-7\end{matrix}\right.\)

Vậy \(x\) \(\in\) {-7; 6}

d; \(x-\dfrac{2}{9}\) = \(\dfrac{1}{6}\)

   \(x\)          = \(\dfrac{1}{6}\) + \(\dfrac{2}{9}\)

   \(x\)          = \(\dfrac{7}{18}\)

Vậy \(x\) = \(\dfrac{7}{18}\)

10 tháng 1 2024

Bài 2: 

\(\dfrac{12}{-24}=\dfrac{12:12}{-24:12}=\dfrac{1}{-2}\)

\(\dfrac{-39}{75}=\dfrac{-39:3}{75:3}=\dfrac{-13}{25}\)

\(\dfrac{132}{-264}=\dfrac{132:132}{-264:132}=\dfrac{1}{-2}\)

10 tháng 1 2024

Bài 3:

\(\dfrac{1}{-2}=\dfrac{-1}{2};\dfrac{-3}{-5}=\dfrac{3}{5};\dfrac{2}{-7}=\dfrac{-2}{7}\)

Bài 4:

\(15p=\dfrac{1}{4}h;20p=\dfrac{1}{3}h;45p=\dfrac{3}{4}h;50p=\dfrac{5}{6}h\)

16 tháng 1 2024

Bài 1: 

a; 24 ⋮ \(x\); 30 ⋮ \(x\); 48 \(⋮\) \(x\) và \(x\) lớn nhất.

vì 24 \(⋮\) \(x\); 30 ⋮ \(x\); 48 ⋮ \(x\) ⇒ \(x\) \(\in\) ƯC(24; 30; 48)

Vì \(x\) là lớn nhât nên \(x\) \(\in\) ƯCLN(24; 30; 48) 

        24 = 22.33;   30 = 2.3.5; 48 = 24.3 

        ƯCLN(24; 30; 48) = 2.3 = 6 

⇒ \(x\) = 6

Vậy \(x\) = 6

16 tháng 1 2024

b; 120 ⋮ \(x\); 180 ⋮ \(x\); 30 ⋮ \(x\) 

   ⇒ \(x\) \(\in\) ƯC(120; 180; 390)

    120 = 23.3.5; 180 = 22.32.5; 390 = 2.3.5.13

ƯC(120; 180; 390) = 2.3.5 = 30 

⇒ \(x\in\) Ư(30) = {1; 2; 3; 5; 6; 10;15; 30}

Vì 5 ≤ \(x\) ≤ 15  nên \(x\) \(\in\) {5; 6; 10; 15}

 

  

 

11 tháng 1 2024

BÀi 1: 

\(\dfrac{\overline{abab}}{\overline{cdcd}}\) = \(\dfrac{\overline{abab:}101}{\overline{cdcd}:101}\) = \(\dfrac{\overline{ab}}{cd}\) 

\(\dfrac{\overline{abcabc}}{\overline{abc}}\) = \(\dfrac{\overline{abc}\times1001}{\overline{abc}}\) = 1001

19 tháng 1 2024

1;  \(\dfrac{7}{15}\) + \(\dfrac{8}{15}\) = \(\dfrac{7+8}{15}\) = \(\dfrac{15}{15}\) = 1

2; \(\dfrac{1}{2}\) - \(\dfrac{1}{14}\) = \(\dfrac{1.7}{2.7}\) - \(\dfrac{1}{14}\) = \(\dfrac{7-1}{14}\) = \(\dfrac{6}{14}\) = \(\dfrac{3}{7}\)

3; \(\dfrac{8}{28}\) + \(\dfrac{-21}{35}\) = \(\dfrac{2}{7}\) + \(\dfrac{-21}{35}\)\(\dfrac{10}{35}\) + \(\dfrac{-21}{35}\) = \(\dfrac{-11}{35}\)

19 tháng 1 2024

4; \(\dfrac{3}{4}\) + \(\dfrac{2}{3}\) - \(\dfrac{9}{6}\)  = \(\dfrac{9}{12}\) + \(\dfrac{8}{12}\) - \(\dfrac{18}{12}\) = \(\dfrac{9+8-18}{12}\) = \(\dfrac{-1}{12}\)

5; \(\dfrac{11}{36}\)\(\dfrac{-7}{-24}\) = \(\dfrac{22}{72}\) + \(\dfrac{21}{72}\) = \(\dfrac{53}{72}\)

6; \(\dfrac{4}{15}\) + \(\dfrac{9}{5}\) - \(\dfrac{7}{3}\) = \(\dfrac{4}{15}\) + \(\dfrac{27}{15}\) - \(\dfrac{35}{15}\) = \(\dfrac{-4}{15}\)