K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 7 2019

Ai giả đc giúp mk với

8 tháng 7 2019

\(H=\sqrt{2+\sqrt{3}}.\sqrt{14-5\sqrt{3}}+\sqrt{2}.\)

\(2.H=\sqrt{2\left(2+\sqrt{3}\right)}.\sqrt{2\left(14-5\sqrt{3}\right)}+2\sqrt{2}\)

\(2H=\sqrt{3+2\sqrt{3}+1}.\sqrt{25-2.5.\sqrt{3}+3}+2\sqrt{2}\)

\(2H=\sqrt{\left(\sqrt{3}+1\right)^2}.\sqrt{\left(5-\sqrt{3}\right)^2}+2\sqrt{2}\)

\(2H=\left(\sqrt{3}+1\right)\left(5-\sqrt{3}\right)+2\sqrt{2}\)

\(2H=5\sqrt{3}-3+5-\sqrt{3}+2\sqrt{2}\)

\(2H=2+4\sqrt{3}+2\sqrt{2}\)

\(H=1+2\sqrt{3}+\sqrt{2}.\)

(P/S :  đừng k cho câu trả lời này nhé)

19 tháng 6 2018

e , \(\sqrt{11^2-\left(6\sqrt{2}\right)^2}\)

27 tháng 10 2019

g, h. Câu hỏi của Nữ hoàng sến súa là ta - Toán lớp 9 - Học toán với OnlineMath

15 tháng 7 2016

\(A=\sqrt{3+\sqrt{5+2\sqrt{3}}.\sqrt{3-\sqrt{5+2\sqrt{3}}}}=\sqrt{\left(3^2\right)-\left(\sqrt{5+2\sqrt{3}}\right)^2}\)

\(=\sqrt{4-2\sqrt{3}}=\sqrt{\left(\sqrt{3}-1\right)^2}=\sqrt{3}-1\)

\(B=\sqrt{4+\sqrt{8}}.\sqrt{2+\sqrt{2+\sqrt{2}}}.\sqrt{2-\sqrt{2+\sqrt{2}}}\)

\(=\sqrt{4+2\sqrt{2}}.\sqrt{2^2-2-\sqrt{2}}=\sqrt{2}.\sqrt{2+\sqrt{2}}.\sqrt{2-\sqrt{2}}\)

\(=\sqrt{2}.\sqrt{4-2}=\sqrt{2}.\sqrt{2}=2\)

\(C=\sqrt{2+\sqrt{3}}.\sqrt{2+\sqrt{2+\sqrt{3}}}.\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{3}}}}.\sqrt{2-\sqrt{2+\sqrt{2+\sqrt{3}}}}\)

\(=\sqrt{2+\sqrt{3}}.\sqrt{2+\sqrt{2+\sqrt{3}}}.\sqrt{2^2-\left(2+\sqrt{2+\sqrt{3}}\right)}\)

\(=\sqrt{2+\sqrt{3}}.\sqrt{2+\sqrt{2+\sqrt{3}}}.\sqrt{2-\sqrt{2+\sqrt{3}}}=\sqrt{2+\sqrt{3}}.\sqrt{2^2-\left(2+\sqrt{3}\right)}\)

\(=\sqrt{2+\sqrt{3}}.\sqrt{2-\sqrt{3}}=\sqrt{4-3}=1\)

15 tháng 7 2016

\(D=\left(4+\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right)\sqrt{4-\sqrt{15}}\)

\(=\sqrt{4+\sqrt{15}}.\sqrt{2}.\left(\sqrt{5}-\sqrt{3}\right).\sqrt{4+\sqrt{15}}.\sqrt{4-\sqrt{15}}\)

\(=\sqrt{\left(\sqrt{5}+\sqrt{3}\right)^2}.\left(\sqrt{5}-\sqrt{3}\right).\sqrt{4^2-15}\)

\(=\left(\sqrt{5}+\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right)=5-3=2\)

\(E=\left(3-\sqrt{5}\right)\sqrt{3+\sqrt{5}}+\left(3+\sqrt{5}\right).\sqrt{3-\sqrt{5}}\)

\(=\sqrt{3+\sqrt{5}}.\sqrt{3-\sqrt{5}}.\sqrt{3-\sqrt{5}}+\sqrt{3+\sqrt{5}}.\sqrt{3-\sqrt{5}}.\sqrt{3+\sqrt{5}}\)

\(=2\sqrt{3-\sqrt{5}}+2\sqrt{3+\sqrt{5}}=\sqrt{2}\left(\sqrt{6-2\sqrt{5}}+\sqrt{6+2\sqrt{5}}\right)\)

\(=\sqrt{2}.\left(\sqrt{5}-1+\sqrt{5}+1\right)=2\sqrt{10}\)

13 tháng 6 2017

Câu 2b đề là tìm x chứ nhỉ???

b) \(\sqrt{x^2-4}+\sqrt{x-2}=0\)

Ta có: \(\left\{{}\begin{matrix}\sqrt{x^2-4}\ge0\\\sqrt{x-2}\ge0\end{matrix}\right.\)

=> Dấu = xảy ra <=> \(\left\{{}\begin{matrix}\sqrt{x^2-4}=0\\\sqrt{x-2}=0\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}x^2-4=0\\x-2=0\end{matrix}\right.\)

<=> \(\left\{{}\begin{matrix}x=\pm2\\x=2\end{matrix}\right.\) <=> x = 2

Vậy x = 2

13 tháng 6 2017

bài 2 câu b) đề sai rồi bạn

còn bài 1 câu b) mình cảm thấy sai sai

Bài 1: 

a: \(=\sqrt{32.4}=\dfrac{9}{5}\sqrt{10}\)

b: \(=\sqrt{5\cdot5\cdot7\cdot7\cdot11\cdot11}=5\cdot7\cdot11=385\)

c: \(=5-2\sqrt{6}\)

d: \(=18-1=17\)

e: \(=3\sqrt{2}-2\sqrt{3}+7\sqrt{3}-7\sqrt{2}=-4\sqrt{2}+5\sqrt{3}\)

a: \(A=\left(4+\sqrt{15}\right)\cdot\left(\sqrt{5}-\sqrt{3}\right)\cdot\sqrt{8-2\sqrt{15}}\)

\(=\left(4+\sqrt{15}\right)\left(8-2\sqrt{15}\right)\)

\(=32-8\sqrt{15}+8\sqrt{15}-30=2\)

b: \(\sqrt{2}\cdot B=\left(3-\sqrt{5}\right)\left(\sqrt{5}+1\right)+\left(3+\sqrt{5}\right)\left(\sqrt{5}-1\right)\)

\(\Leftrightarrow B\sqrt{2}=3\sqrt{5}+3-5-\sqrt{5}+3\sqrt{5}-3+5-\sqrt{5}\)

\(\Leftrightarrow B\sqrt{2}=4\sqrt{5}\)

hay \(B=2\sqrt{10}\)

d: \(D\sqrt{2}=\sqrt{5}+\sqrt{3}+\sqrt{5}-\sqrt{3}-2\cdot\left(\sqrt{5}-1\right)\)

\(=2\sqrt{5}-2\sqrt{5}+2=2\)

hay \(D=\sqrt{2}\)

13 tháng 3 2020
https://i.imgur.com/LeR5GY4.jpg

a: \(=\left(4+\sqrt{15}\right)\left(\sqrt{5}-\sqrt{3}\right)\cdot\sqrt{8-2\sqrt{15}}\)

\(=\left(4+\sqrt{15}\right)\left(8-2\sqrt{15}\right)\)

\(=32-8\sqrt{15}+8\sqrt{15}-30=2\)

b: \(=\dfrac{\left(3-\sqrt{5}\right)\left(\sqrt{5}+1\right)+\left(3+\sqrt{5}\right)\left(\sqrt{5}-1\right)}{\sqrt{2}}\)

\(=\dfrac{3\sqrt{5}+3-5-\sqrt{5}+3\sqrt{5}-3+5-\sqrt{5}}{\sqrt{2}}\)

\(=\dfrac{4\sqrt{5}}{\sqrt{2}}=2\sqrt{10}\)

AH
Akai Haruma
Giáo viên
23 tháng 11 2018

Câu 1:

Có: \(8-4\sqrt{3}=8-2\sqrt{12}=6+2-2\sqrt{6.2}=(\sqrt{6}-\sqrt{2})^2\)

\(\Rightarrow \sqrt{8-4\sqrt{3}}=\sqrt{6}-\sqrt{2}\)

Do đó:

\(\frac{\sqrt{8-4\sqrt{3}}}{\sqrt{\sqrt{6}-\sqrt{2}}}.\sqrt{\sqrt{6}+\sqrt{2}}=\frac{\sqrt{6}-\sqrt{2}}{\sqrt{\sqrt{6}-\sqrt{2}}}.\sqrt{\sqrt{6}+\sqrt{2}}=\sqrt{\sqrt{6}-\sqrt{2}}.\sqrt{\sqrt{6}+\sqrt{2}}\)

\(=\sqrt{(\sqrt{6})^2-(\sqrt{2})^2}=\sqrt{6-2}=2\)

AH
Akai Haruma
Giáo viên
23 tháng 11 2018

Câu 2:

\(16-5\sqrt{7}=\frac{32-10\sqrt{7}}{2}=\frac{32-2\sqrt{175}}{2}=\frac{25+7-2\sqrt{25.7}}{2}=\frac{(5-\sqrt{7})^2}{2}\)

\(\Rightarrow \sqrt{16-5\sqrt{7}}=\frac{5-\sqrt{7}}{\sqrt{2}}\)

Do đó:

\(\sqrt{16-5\sqrt{7}}(5\sqrt{2}+\sqrt{14})+\frac{6}{3+\sqrt{10}}=\frac{5-\sqrt{7}}{\sqrt{2}}.\sqrt{2}(5+\sqrt{7})+\frac{6(3-\sqrt{10})}{(3+\sqrt{10})(3-\sqrt{10})}\)

\(=(5-\sqrt{7})(5+\sqrt{7})+\frac{18-6\sqrt{10}}{3^2-10}=25-7+(-18+6\sqrt{10})\)

\(=6\sqrt{10}\)

AH
Akai Haruma
Giáo viên
10 tháng 9 2020

Bài 1:
Xét tử số:

\(\sqrt{14+6\sqrt{5}}-\sqrt{14-6\sqrt{5}}=\sqrt{3^2+5+2.3\sqrt{5}}-\sqrt{3^2+5-2.3\sqrt{5}}\)

\(=\sqrt{(3+\sqrt{5})^2}-\sqrt{(3-\sqrt{5})^2}=3+\sqrt{5}-(3-\sqrt{5})=2\sqrt{5}\)

Xét mẫu số:
\(\sqrt{(\sqrt{5}+1)\sqrt{6-2\sqrt{5}}}=\sqrt{(\sqrt{5}+1)\sqrt{5+1-2\sqrt{5}}}=\sqrt{(\sqrt{5}+1)\sqrt{(\sqrt{5}-1)^2}}\)

\(=\sqrt{(\sqrt{5}+1)(\sqrt{5}-1)}=\sqrt{4}=2\)

Do đó: $A=\frac{2\sqrt{5}}{2}=\sqrt{5}$

10 tháng 9 2020

dạ em cảm ơn

30 tháng 11 2016

A=\(\sqrt{\frac{\sqrt{5}}{8\sqrt{5}+3\sqrt{35}}}.3\sqrt{2}+\sqrt{14}=\sqrt{\frac{\sqrt{5}}{\sqrt{5}\left(8+3\sqrt{7}\right)}}.\sqrt{2}\left(3+\sqrt{7}\right)\)

\(8>3.\sqrt{7}\Rightarrow8-3\sqrt{7}>0\left(lienhop\right)\left(8-3\sqrt{7}\right)\)

\(A=\sqrt{\left(8-3.\sqrt{7}\right)}.\sqrt{2}\left(3+\sqrt{7}\right)\)

\(A=\sqrt{\left(16-2.3.\sqrt{7}\right)}.\left(3+\sqrt{7}\right)\)

\(A=\sqrt{3^2-2.3.\sqrt{7}+\left(\sqrt{7}\right)^2}.\left(3+\sqrt{7}\right)\)

\(A=\sqrt{\left(3-\sqrt{7}\right)^2}\left(3+\sqrt{7}\right)\)

\(3-\sqrt{7}>0\)

\(\Rightarrow A=\left(3-\sqrt{7}\right)\left(3+\sqrt{7}\right)=9-7=2\)