K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 3 2020

a) Câu hỏi của ☪Ņĥøķ Ņģøç☪ - Toán lớp 6 - Học toán với OnlineMath

5 tháng 1 2018

a, \(\frac{3n}{3n+1}\) 

Vì 3n + 1 hơn 3n 1 đơn vị, n \(\in\) Z 

\(\Rightarrow\) ƯCLN ( 3n; 3n + 1 ) = 1

\(\Rightarrow\frac{3n}{3n+1}\) là phân số tối giản

Vậy \(\frac{3n}{3n+1}\) là phân số tối giản ( đpcm )

b, \(\frac{4n+1}{6n+1}=\frac{24n+6}{24n+4}\)

Đề bài sai

Các câu c,d,e,g,h tương tự

5 tháng 1 2018

Các phân số đó tối giản khi UWCLN của tử và mẫu của nó bằng 1 

Vậy bạn hãy chứng minh UWCLN(tử,mẫu)=1

a)Gọi ƯCLN (\(n+3;2n+5\))=d

\(\Rightarrow\left\{{}\begin{matrix}\left(n+3\right)⋮d\Rightarrow2\left(n+3\right)⋮d\Rightarrow\left(2n+6\right)⋮d\\\left(2n+5\right)⋮d\end{matrix}\right.\)

\(\Rightarrow\left(2n+6\right)-\left(2n+5\right)⋮d\Rightarrow1⋮d\Rightarrow d=1\)

⇒ƯCLN (\(n+3;2n+5\))=1

\(\Rightarrow\frac{n+3}{2n+5}\)là phân số tối giản(đpcm)

b)Gọi ƯCLN (\(2n+9;3n+14\))=d

\(\Rightarrow\left\{{}\begin{matrix}\left(2n+9\right)⋮d\Rightarrow3\left(2n+9\right)⋮d\Rightarrow\left(6n+27\right)⋮d\\\left(3n+14\right)⋮d\Rightarrow2\left(3n+14\right)⋮d\Rightarrow\left(6n+28\right)⋮d\end{matrix}\right.\)

\(\Rightarrow\left(6n+28\right)-\left(6n+27\right)⋮d\Rightarrow1⋮d\Rightarrow d=1\)

⇒ƯCLN (\(2n+9;3n+14\))=1

\(\Rightarrow\frac{2n+9}{3n+14}\) là phân số tối giản.(đpcm)

c)Gọi ƯCLN(\(6n+11;2n+5\))=d

\(\Rightarrow\left\{{}\begin{matrix}\left(6n+11\right)⋮d\\\left(2n+5\right)⋮d\Rightarrow3\left(2n+5\right)⋮d\Rightarrow\left(6n+15\right)⋮d\end{matrix}\right.\)

\(\Rightarrow\left(6n+15\right)-\left(6n+11\right)⋮d\)

\(\Rightarrow4⋮d\)

\(\left(6n+15\right);\left(6n+11\right)⋮̸2\)

\(\Rightarrow d=1\)

⇒ƯCLN(\(6n+11;2n+5\))=1

\(\Rightarrow\frac{6n+11}{2n+5}\)là phân số tối giản (đpcm)

d)Gọi ƯCLN(\(12n+1;30n+2\))=d

\(\Rightarrow\left\{{}\begin{matrix}\left(12n+1\right)⋮d\Rightarrow5\left(12n+1\right)⋮d\Rightarrow\left(60n+5\right)⋮d\\\left(30n+2\right)⋮d\Rightarrow2\left(30n+2\right)⋮d\Rightarrow\left(60n+4\right)⋮d\end{matrix}\right.\)

\(\Rightarrow\left(60n+5\right)-\left(60n+4\right)⋮d\)

\(\Rightarrow1⋮d\Rightarrow d=1\)

⇒ƯCLN(\(12n+1;30n+2\))=1

\(\Rightarrow\frac{12n+1}{30n+2}\) là phân số tối giản (đpcm)

e)Gọi ƯCLN(\(21n+4;14n+3\))=d

\(\Rightarrow\left\{{}\begin{matrix}\left(21n+4\right)⋮d\Rightarrow2\left(21n+4\right)⋮d\Rightarrow\left(42n+8\right)⋮d\\\left(14n+3\right)⋮d\Rightarrow3\left(14n+3\right)⋮d\Rightarrow\left(42n+9\right)⋮d\end{matrix}\right.\)

\(\Rightarrow\left(42n+9\right)-\left(42n+8\right)⋮d\Rightarrow1⋮d\Rightarrow d=1\)

⇒ƯCLN(\(21n+4;14n+3\))=1

\(\Rightarrow\frac{21n+4}{14n+3}\)là phân số tối giản (đpcm)

f) Gọi ƯCLN(\(2n+3;n+2\))=d

\(\Rightarrow\left\{{}\begin{matrix}\left(2n+3\right)⋮d\\\left(n+2\right)⋮d\Rightarrow2\left(n+2\right)⋮d\Rightarrow\left(2n+4\right)⋮d\end{matrix}\right.\)

\(\Rightarrow\left(2n+4\right)-\left(2n+3\right)⋮d\Rightarrow1⋮d\Rightarrow d=1\)

⇒ƯCLN(\(2n+3;n+2\))=1

\(\Rightarrow\frac{2n+3}{n+2}\)là phân số tối giản (đpcm)
g) Gọi ƯCLN(\(n+1;3n+2\))=d

\(\Rightarrow\left\{{}\begin{matrix}\left(n+1\right)⋮d\Rightarrow3\left(n+1\right)⋮d\Rightarrow\left(3n+3\right)⋮d\\\left(3n+2\right)⋮d\end{matrix}\right.\)

\(\Rightarrow\left(3n+3\right)-\left(3n+2\right)⋮d\Rightarrow1⋮d\Rightarrow d=1\)

⇒ƯCLN(\(n+1;3n+2\))=1

\(\Rightarrow\frac{n+1}{3n+2}\) là phân số tối giản (đpcm)

12 tháng 2 2017

mk biết làm bài này đấy nhưng hơi dài

12 tháng 2 2017

Hướng dẫn: Đặt (tử, mẫu)=d

Phương pháp: Tìm được d = 1.

Cách làm: Nhân tử với a, nhân mẫu với b (a, b là số nguyên) sao cho khi trừ đi 2 kết quả mới triệt tiêu được 2 biểu thức chứa n. 

                Cuối cùng sẽ tìm được 1 là bội của b => d=1

Còn lại cậu tự làm nhé!

31 tháng 1 2018

a) Gọi d là ƯCLN(n, n + 1), d ∈ N*

\(\Rightarrow\hept{\begin{cases}n⋮d\\n+1⋮d\end{cases}}\)

\(\Rightarrow\left(n+1\right)-n⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=1\)

\(\RightarrowƯCLN\left(n,n+1\right)=1\)

\(\Rightarrow\) \(\frac{n}{n+1}\) là phân số tối giản.

b) Gọi d là ƯCLN(n + 1, 2n + 3), d ∈ N*

\(\Rightarrow\hept{\begin{cases}n+1⋮d\\2n+3⋮d\end{cases}\Rightarrow\hept{\begin{cases}2\left(n+1\right)⋮d\\2n+3⋮d\end{cases}\Rightarrow}\hept{\begin{cases}2n+2⋮d\\2n+3⋮d\end{cases}}}\)

\(\Rightarrow\left(2n+3\right)-\left(2n+2\right)⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=1\)

\(\RightarrowƯCLN\left(n+1,2n+3\right)=1\)

\(\Rightarrow\) \(\frac{n+1}{2n+3}\) là phân số tối giản.

31 tháng 1 2018

c) Gọi d là ƯCLN(21n + 4, 14n + 3), d ∈ N*

\(\Rightarrow\hept{\begin{cases}21n+4⋮d\\14n+3⋮d\end{cases}\Rightarrow\hept{\begin{cases}2\left(21n+4\right)⋮d\\3\left(14n+3\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}42n+8⋮d\\42n+9⋮d\end{cases}}}\)

\(\Rightarrow\left(42n+9\right)-\left(42n+8\right)⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=1\)

\(\RightarrowƯCLN\left(21n+4,14n+3\right)=1\)

\(\Rightarrow\) \(\frac{21n+4}{14n+3}\) là phân số tối giản.

d) Gọi d là ƯCLN(2n + 3, 3n + 5), d ∈ N*

\(\Rightarrow\hept{\begin{cases}2n+3⋮d\\3n+5⋮d\end{cases}\Rightarrow\hept{\begin{cases}3\left(2n+3\right)⋮d\\2\left(3n+5\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}6n+9⋮d\\6n+10⋮d\end{cases}}}\)

\(\Rightarrow\left(6n+10\right)-\left(6n+9\right)⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=1\)

\(\RightarrowƯCLN\left(2n+3,3n+5\right)=1\)

\(\Rightarrow\) \(\frac{2n+3}{3n+5}\) là phân số tối giản.

12 tháng 2 2017

Gợi ý thôi chứ giải ra dài lắm !!

\(\frac{a}{b}\) tối giản khi và chỉ khi UCLN(a;b)=1