Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Gọi ƯCLN (\(n+3;2n+5\))=d
\(\Rightarrow\left\{{}\begin{matrix}\left(n+3\right)⋮d\Rightarrow2\left(n+3\right)⋮d\Rightarrow\left(2n+6\right)⋮d\\\left(2n+5\right)⋮d\end{matrix}\right.\)
\(\Rightarrow\left(2n+6\right)-\left(2n+5\right)⋮d\Rightarrow1⋮d\Rightarrow d=1\)
⇒ƯCLN (\(n+3;2n+5\))=1
\(\Rightarrow\frac{n+3}{2n+5}\)là phân số tối giản(đpcm)
b)Gọi ƯCLN (\(2n+9;3n+14\))=d
\(\Rightarrow\left\{{}\begin{matrix}\left(2n+9\right)⋮d\Rightarrow3\left(2n+9\right)⋮d\Rightarrow\left(6n+27\right)⋮d\\\left(3n+14\right)⋮d\Rightarrow2\left(3n+14\right)⋮d\Rightarrow\left(6n+28\right)⋮d\end{matrix}\right.\)
\(\Rightarrow\left(6n+28\right)-\left(6n+27\right)⋮d\Rightarrow1⋮d\Rightarrow d=1\)
⇒ƯCLN (\(2n+9;3n+14\))=1
\(\Rightarrow\frac{2n+9}{3n+14}\) là phân số tối giản.(đpcm)
c)Gọi ƯCLN(\(6n+11;2n+5\))=d
\(\Rightarrow\left\{{}\begin{matrix}\left(6n+11\right)⋮d\\\left(2n+5\right)⋮d\Rightarrow3\left(2n+5\right)⋮d\Rightarrow\left(6n+15\right)⋮d\end{matrix}\right.\)
\(\Rightarrow\left(6n+15\right)-\left(6n+11\right)⋮d\)
\(\Rightarrow4⋮d\)
Mà \(\left(6n+15\right);\left(6n+11\right)⋮̸2\)
\(\Rightarrow d=1\)
⇒ƯCLN(\(6n+11;2n+5\))=1
\(\Rightarrow\frac{6n+11}{2n+5}\)là phân số tối giản (đpcm)
d)Gọi ƯCLN(\(12n+1;30n+2\))=d
\(\Rightarrow\left\{{}\begin{matrix}\left(12n+1\right)⋮d\Rightarrow5\left(12n+1\right)⋮d\Rightarrow\left(60n+5\right)⋮d\\\left(30n+2\right)⋮d\Rightarrow2\left(30n+2\right)⋮d\Rightarrow\left(60n+4\right)⋮d\end{matrix}\right.\)
\(\Rightarrow\left(60n+5\right)-\left(60n+4\right)⋮d\)
\(\Rightarrow1⋮d\Rightarrow d=1\)
⇒ƯCLN(\(12n+1;30n+2\))=1
\(\Rightarrow\frac{12n+1}{30n+2}\) là phân số tối giản (đpcm)
e)Gọi ƯCLN(\(21n+4;14n+3\))=d
\(\Rightarrow\left\{{}\begin{matrix}\left(21n+4\right)⋮d\Rightarrow2\left(21n+4\right)⋮d\Rightarrow\left(42n+8\right)⋮d\\\left(14n+3\right)⋮d\Rightarrow3\left(14n+3\right)⋮d\Rightarrow\left(42n+9\right)⋮d\end{matrix}\right.\)
\(\Rightarrow\left(42n+9\right)-\left(42n+8\right)⋮d\Rightarrow1⋮d\Rightarrow d=1\)
⇒ƯCLN(\(21n+4;14n+3\))=1
\(\Rightarrow\frac{21n+4}{14n+3}\)là phân số tối giản (đpcm)
f) Gọi ƯCLN(\(2n+3;n+2\))=d
\(\Rightarrow\left\{{}\begin{matrix}\left(2n+3\right)⋮d\\\left(n+2\right)⋮d\Rightarrow2\left(n+2\right)⋮d\Rightarrow\left(2n+4\right)⋮d\end{matrix}\right.\)
\(\Rightarrow\left(2n+4\right)-\left(2n+3\right)⋮d\Rightarrow1⋮d\Rightarrow d=1\)
⇒ƯCLN(\(2n+3;n+2\))=1
\(\Rightarrow\frac{2n+3}{n+2}\)là phân số tối giản (đpcm)
g) Gọi ƯCLN(\(n+1;3n+2\))=d
\(\Rightarrow\left\{{}\begin{matrix}\left(n+1\right)⋮d\Rightarrow3\left(n+1\right)⋮d\Rightarrow\left(3n+3\right)⋮d\\\left(3n+2\right)⋮d\end{matrix}\right.\)
\(\Rightarrow\left(3n+3\right)-\left(3n+2\right)⋮d\Rightarrow1⋮d\Rightarrow d=1\)
⇒ƯCLN(\(n+1;3n+2\))=1
\(\Rightarrow\frac{n+1}{3n+2}\) là phân số tối giản (đpcm)
Bài 1:
Chứng minh rằng: 2n + 1 và 3n + 1 là hai số nguyên tố cùng nhau. (với n ∈∈ N)
Bài giải:
Gọi d = ƯCLN(2n + 1; 3n + 1)
⇒⎧⎨⎩2n+1⋮d3n+1⋮d⇒{2n+1⋮d3n+1⋮d ⇒⎧⎨⎩3(2n+1)⋮d2(3n+1)⋮d⇒{3(2n+1)⋮d2(3n+1)⋮d ⇒⎧⎨⎩6n+3⋮d6n+2⋮d⇒{6n+3⋮d6n+2⋮d
⇒⇒ (6n + 3) – (6n + 2) ⋮⋮ d
⇒⇒1 ⋮⋮d
⇒⇒d = 1
Do đó: ƯCLN(2n + 1; 3n + 1) = 1
Vậy hai số 2n + 1 và 3n + 1 là hai số nguyên tố cùng nhau.
Bài 2:
Chứng minh rằng: 2n + 5 và 4n + 12 là hai số nguyên tố cùng nhau. (với n ∈∈ N)
Bài giải:
Gọi d = ƯCLN(2n + 5; 4n + 12)
⇒⎧⎨⎩2n+5⋮d4n+12⋮d⇒{2n+5⋮d4n+12⋮d ⇒⎧⎨⎩2(2n+5)⋮d4n+12⋮d⇒{2(2n+5)⋮d4n+12⋮d ⇒⎧⎨⎩4n+10⋮d4n+12⋮d⇒{4n+10⋮d4n+12⋮d
⇒⇒ (4n + 12) – (4n + 10) ⋮⋮ d
⇒⇒2 ⋮⋮d
Mà: 2n + 5 là số lẻ nên d = 1
Do đó: ƯCLN(2n + 5; 4n + 12) = 1
Vậy hai số 2n +5 và 4n + 12 là hai số nguyên tố cùng nhau.
Bài 3:
Chứng minh rằng: 12n + 1 và 30n + 2 là hai số nguyên tố cùng nhau. (với n ∈∈ N)
Bài giải:
Gọi d = ƯCLN(12n + 1; 30n + 2)
⇒⎧⎨⎩12n+1⋮d30n+2⋮d⇒{12n+1⋮d30n+2⋮d ⇒⎧⎨⎩5(12n+1)⋮d2(30n+2)⋮d⇒{5(12n+1)⋮d2(30n+2)⋮d ⇒⎧⎨⎩60n+5⋮d60n+4⋮d⇒{60n+5⋮d60n+4⋮d
⇒⇒ (60n + 5) – (60n + 4) ⋮⋮ d
⇒⇒1 ⋮⋮d
⇒⇒d = 1
Do đó: ƯCLN(12n + 1; 30n + 2) = 1
Vậy hai số 12n +1 và 30n +2 là hai số nguyên tố cùng nhau.
Bài 4:
Chứng minh rằng: 2n + 5 và 3n + 7 là hai số nguyên tố cùng nhau. (với n ∈∈ N)
Bài giải:
Gọi d = ƯCLN(2n + 5; 3n + 7) (với d ∈∈N*)
⇒⎧⎨⎩2n+5⋮d3n+7⋮d⇒{2n+5⋮d3n+7⋮d ⇒⎧⎨⎩3(2n+5)⋮d2(3n+7)⋮d⇒{3(2n+5)⋮d2(3n+7)⋮d ⇒⎧⎨⎩6n+15⋮d6n+14⋮d⇒{6n+15⋮d6n+14⋮d
⇒⇒ (6n + 15) – (6n + 14) ⋮⋮ d
⇒⇒1 ⋮⋮d
⇒⇒d = 1
Do đó: ƯCLN(2n + 5; 3n + 7) = 1
Vậy hai số 2n + 5 và 3n +7 là hai số nguyên tố cùng nhau.
Bài 5:
Chứng minh rằng: 5n + 7 và 3n + 4 là hai số nguyên tố cùng nhau. (với n ∈∈N)
Bài giải:
Gọi d = ƯCLN(5n + 7; 3n + 4) (với d ∈∈N*)
⇒⎧⎨⎩5n+7⋮d3n+4⋮d⇒{5n+7⋮d3n+4⋮d ⇒⎧⎨⎩3(5n+7)⋮d5(3n+4)⋮d⇒{3(5n+7)⋮d5(3n+4)⋮d ⇒⎧⎨⎩15n+21⋮d15n+20⋮d⇒{15n+21⋮d15n+20⋮d
⇒⇒ (15n + 21) – (15n + 20) ⋮⋮ d
⇒⇒1 ⋮⋮d
⇒⇒d = 1
Do đó: ƯCLN(5n + 7; 3n + 4) = 1
Vậy hai số 5n + 7 và 3n +4 là hai số nguyên tố cùng nhau.
Bài 6:
Chứng minh rằng: 7n + 10 và 5n + 7 là hai số nguyên tố cùng nhau. (với n ∈∈N)
Bài giải:
Gọi d = ƯCLN(7n + 10; 5n + 7) (với d ∈∈N*)
⇒⎧⎨⎩7n+10⋮d5n+7⋮d⇒{7n+10⋮d5n+7⋮d ⇒⎧⎨⎩5(7n+10)⋮d7(5n+7)⋮d⇒{5(7n+10)⋮d7(5n+7)⋮d ⇒⎧⎨⎩35n+50⋮d35n+49⋮d⇒{35n+50⋮d35n+49⋮d
⇒⇒ (35n + 50) – (35n + 49) ⋮⋮ d
⇒⇒1 ⋮⋮d
⇒⇒d = 1
Do đó: ƯCLN(7n + 10; 5n + 7) = 1
Vậy hai số 7n + 10 và 5n +7 là hai số nguyên tố cùng nhau.
a) Gọi d là ƯCLN(n, n + 1), d ∈ N*
\(\Rightarrow\hept{\begin{cases}n⋮d\\n+1⋮d\end{cases}}\)
\(\Rightarrow\left(n+1\right)-n⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
\(\RightarrowƯCLN\left(n,n+1\right)=1\)
\(\Rightarrow\) \(\frac{n}{n+1}\) là phân số tối giản.
b) Gọi d là ƯCLN(n + 1, 2n + 3), d ∈ N*
\(\Rightarrow\hept{\begin{cases}n+1⋮d\\2n+3⋮d\end{cases}\Rightarrow\hept{\begin{cases}2\left(n+1\right)⋮d\\2n+3⋮d\end{cases}\Rightarrow}\hept{\begin{cases}2n+2⋮d\\2n+3⋮d\end{cases}}}\)
\(\Rightarrow\left(2n+3\right)-\left(2n+2\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
\(\RightarrowƯCLN\left(n+1,2n+3\right)=1\)
\(\Rightarrow\) \(\frac{n+1}{2n+3}\) là phân số tối giản.
c) Gọi d là ƯCLN(21n + 4, 14n + 3), d ∈ N*
\(\Rightarrow\hept{\begin{cases}21n+4⋮d\\14n+3⋮d\end{cases}\Rightarrow\hept{\begin{cases}2\left(21n+4\right)⋮d\\3\left(14n+3\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}42n+8⋮d\\42n+9⋮d\end{cases}}}\)
\(\Rightarrow\left(42n+9\right)-\left(42n+8\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
\(\RightarrowƯCLN\left(21n+4,14n+3\right)=1\)
\(\Rightarrow\) \(\frac{21n+4}{14n+3}\) là phân số tối giản.
d) Gọi d là ƯCLN(2n + 3, 3n + 5), d ∈ N*
\(\Rightarrow\hept{\begin{cases}2n+3⋮d\\3n+5⋮d\end{cases}\Rightarrow\hept{\begin{cases}3\left(2n+3\right)⋮d\\2\left(3n+5\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}6n+9⋮d\\6n+10⋮d\end{cases}}}\)
\(\Rightarrow\left(6n+10\right)-\left(6n+9\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
\(\RightarrowƯCLN\left(2n+3,3n+5\right)=1\)
\(\Rightarrow\) \(\frac{2n+3}{3n+5}\) là phân số tối giản.
a) Câu hỏi của ☪Ņĥøķ Ņģøç☪ - Toán lớp 6 - Học toán với OnlineMath
a) goi ƯCLN(n,n+1) là d
ta co : n ⋮ d ; n+1 ⋮d (1)
⇒ (n+1)-n ⋮ d
⇒1 ⋮ d (2)
Từ (1) và (2) ⇒ d = 1 hoac -1
Vậy \(\dfrac{n}{n+1}\) là phân số tối giản.
b) goi UCLN (n+1,2n+3)la d
=>(2n+3) - (n+1)⋮d
=>(2n+3) - [ 2(n+1)] ⋮ d
=>(2n+3)-(2n+2)⋮d
=>2n+3-2n-2 ⋮ d
=>1 ⋮ d => d=1
vay \(\dfrac{n+1}{2n+3}\) là phân số tối giản.
đề : Chứng minh rằng các cặp số sau là SNT cùng nhau