Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tại P dao động cực tiểu khi \(d_{2}-d_{1}=(2k+1+\frac{\triangle \phi}{\pi})\frac{\lambda}{2}.\)
Tại P dao động cực đại khi \(d_{2}-d_{1}=(k+\frac{\triangle \phi}{2\pi})\lambda.\)
Tại M là vân lồi bậc k và tại N là vân lồi bậc k + 3 =>\(MA-MB=(k+0.5)\lambda=12.25\\ NA-NB=(k+3+0.5)\lambda=33.25\\ \)
\(\Rightarrow 3\lambda=33.25-12.25=21 \Rightarrow \lambda=7mm.\)
Số điểm cực đại giao thoa trên đoạn AB là \(-AB\leq (k+\frac{1}{2})\lambda\leq AB \Rightarrow \frac{-AB}{\lambda}-0.5 \leq k \leq \frac{AB}{\lambda}\)
=> có 14 điểm cực đại giao thoa kể cả A và B.
\(\Delta \varphi = -\frac{\pi}{2}\)
Người ta thấy vân lồi bậc k đi qua điểm M tức là M thuộc dãy cực đại thứ k: \(MA -MB = (k+ \frac{\Delta \varphi}{2\pi}) \lambda = (k-\frac{1}{4}) \lambda = 12,25mm.(1)\)
Tương tự, N thuộc dãy cực đại thứ k+3 tức là \(NA -NB = (k+3-\frac{1}{4}) \lambda = 33,25mm.(2)\)
Chia (2) cho (1) ta được: \(\frac{k+3-0,25}{k-0,25} = \frac{33.25}{12.25} \)
=> \(k = 2\)
thay vào (1) => \(\lambda = 7m m.\)
Số điểm cực đại trên đoạn AB thỏa mãn: \(-AB < (k - \frac{1}{4}) \lambda < AB\)
=> \(50 < (k-0.25).7 < 50\)
=> \(-6.89< k < 7.39\)
=> \(k = -6,-5,...0,..7\) Số giá trị của k thỏa mãn là:số đầu - số cuối +1 = \(7-(-6)+1 = 14.\)
Đáp án B
+ M và N cùng loại do vậy ta luôn có hiệu số:
∆ d N - ∆ d M = 2 λ ⇒ λ = 3 cm.
+Xét tỉ số S 1 P - S 2 P λ = - 6 , 9 có 13 điểm cực đại trên PQ
\(\lambda =\frac{v}{f}=\frac{50}{10}=5cm.\)
Điểm M ngược pha với điểm I khi: \(\triangle \phi=\phi_I-\phi_M = 2\pi \frac{d_1-d_{1}^{'}}{\lambda}=(2k+1)\pi \Rightarrow d_1-d_1^{'}=(2k+1)\frac{\lambda}{2}\)
Để điểm M gần I nhất thì hiệu d1 - d1' cũng phải nhỏ nhất khi đó k chỉ nhận giá trị nhỏ nhất là k = 0.
\(d_{1}-d_{1}^{'}=(2.0+1)\frac{5}{2}=2.5cm\Rightarrow d_1 = 7.5cm.\)
\(\Rightarrow MI= \sqrt {d_1^{2}-d_1^{'2}}\) = \(\sqrt{7.5^2-2.5^2}=\sqrt{50}cm\)
\(\lambda = v/f = 80/20 = 4cm.\)
\(\triangle \varphi = \pi-0=\pi.\)
Nhận xét: \(BM-AM=(BI+IM)-(AI-IM)=2MI\)
\( A_M = |2a\cos\pi(\frac{d_2-d_1}{\lambda}-\frac{\triangle\varphi}{2\pi})| = |2a\cos\pi(\frac{BM-AM}{\lambda}-\frac{\triangle\varphi}{2\pi})|\\=|2a\cos\pi(\frac{2MI}{\lambda}-\frac{\triangle\varphi}{2\pi})| = |2a\cos\pi(\frac{6}{4}-\frac{\pi}{2\pi})| = |-2a|=2a=10 mm.\)
Đáp án A
Ta có ω = 20π → f = 10Hz → λ = v/f = 3 cm.
→ AB = 40 cm = 13λ + λ/3.
Những điểm dao động với biên độ 3 2 cm cách nút những khoảng λ/4.
→ Trên AB có số điểm dao động với biên độ 3 2 cm là: 13.4 + 2 = 54 điểm.
Chọn đáp án B
+ Bước sóng: λ = v f = 6 c m
+ Phương trình sóng tổng hợp tại một điểm: u = 2 a c o s π d 1 − d 2 λ c o s 10 π t − π d 1 + d 2 λ
+Vì d 1 + d 2 = A B ⇒ u M u N = c o s π d 2 M − d 1 M λ c o s π d 1 N − d 2 N λ = c o s 2 π 6 c o s 6 π 6 = − 1 2 ⇒ 2 u N = − 1 2 ⇒ u N = − 2 2 m m
Đáp án B
+ Giả sử rằng cả M và N là các cực đại giao thoa (hoặc cực tiểu không ảnh hưởng đến kết quả bài toán). Khi đó ta có:
MA - MB = kλ = 100 NA - NB = ( k + 5 ) λ = 30 ⇒ 5 λ = 20 ⇒ λ = 4 mm .
+ Từ phương trình sóng, ta có ω = 100 π rad / s ⇒ T = 0 , 02 s .
=> Vận tốc truyền sóng v = λ/T = 4/0,02 = 200 mm/s = 20 cm/s.