\(GTNN\) của \(P=2x^2+2y^2-2xy-6y+21\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 1 2017

bang 119

17 tháng 1 2017

tại sao ????

27 tháng 11 2016

violympic có bài này á, chưa gặp bao giờ

12 tháng 1 2017

\(2x^2\:+2y^2\:-2xy\:-6y\:+21\)

\(=2\left(x^2-xy+\frac{y^2}{4}\right)+\frac{3}{2}\left(y^2-4y+4\right)+15\\=2\left(x-\frac{y}{2}\right)^2+\frac{3}{2}\left(y-2\right)^2+15\:\ge \:15\)

Dấu "=" xảy ra khi \(\left\{\begin{matrix}x-\frac{y}{2}=0\\y-2=0\end{matrix}\right.\)\(\Rightarrow\left\{\begin{matrix}x=1\\y=2\end{matrix}\right.\)

Vậy \(Min_P=15\) khi \(\left\{\begin{matrix}x=1\\y=2\end{matrix}\right.\)

21 tháng 3 2020

Ta có: \(2x^2+2y^2+2xy-6y+8=\left(2x^2+2xy+\frac{1}{2}y^2\right)+\left(\frac{3}{2}y^2-6y+6\right)+2=2\left(x+\frac{1}{2}y\right)^2+\frac{3}{2}\left(y-2\right)^2+2\ge2\)

Dấu "=" xảy ra khi và chỉ khi: \(\left\{{}\begin{matrix}x=\frac{-y}{2}\\y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=2\end{matrix}\right.\)

Vậy....

21 tháng 3 2020

Ta có đặt A= \(\left(x^2+y^2-1+2xy-2y-2x\right)\)+\(\left(x^2+2x+1\right)+\left(y^2-4x+4\right)\)+4

=\(\left(x+y-1\right)^2+\left(x+1\right)^2+\left(y-2\right)^2+4\)≥4

=>GTNN của biểu thức <=>\(min_A\)=4

Dấu "=" xảy ra <=>x+y-1=0

x+1=0

y-2=0

=> x=-1

y=-2

18 tháng 3 2018

Ta Có :

\(M=x^2+2y^2+2xy-2x-6y+2020\)

\(M=\left(x^2+2xy-2x\right)+2y^2-6y+2020\)

\(M=\left(x^2+2x\left(y-1\right)+\left(y-1\right)^2\right)+2y^2-6y+2020-\left(y-1\right)^2\)

\(M=\left(x+y-1\right)^2+2y^2-6y-y^2+2y-1+2020\)

\(M=\left(x+y-1\right)^2+\left(y^2-4y+4\right)+2015\)

\(M=\left(x+y-1\right)^2+\left(y-2\right)^2+2015\)

Nhận xét : Vì \(\left(x+y-1\right)^2\ge0\) với \(\forall x,y\)

\(\left(y-2\right)^2\ge0\) với \(\forall y\)

\(\Rightarrow M\ge2015\) với \(\forall x,y\)

Vậy GTNN của M là 2015 đạt được khi

\(\left\{{}\begin{matrix}x+y-1=0\\y-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=2\end{matrix}\right.\)

tik mik nha !!!

2 tháng 12 2017

x2 + 2y2 + 2xy - 2x - 6y + 2020

= x2 + 2xy + y2 + y2 - 2x - 6y + 2020

= (x+y)2 + y2 - 4y + 4 - 2x - 2y + 2016

= (x+y)2 + (y-z)2 - 2(x+y) + 2016

= (x+y)2 - 2(x+y) + 1 + (y-z)2 + 2015

= (x+y-1)2 + (y-z)2 + 2015 ≥ 2015

Dấu "=" xảy ra khi x+y-1=0 và y-2=0

(=) x=-1 y=2

Vậy GTNN của biểu thức trên là 2015 khi x=-1 và y=2

Chúc bạn học tốt ^^

AH
Akai Haruma
Giáo viên
25 tháng 11 2017

Lời giải:

a) \(A=x^2+2y^2-2xy+2x-10y\)

\(\Leftrightarrow A=(x-y+1)^2+(y-4)^2-17\)

Ta thấy \((x-y+1)^2; (y-4)^2\geq 0\Rightarrow A\geq -17\)

Vậy \(A_{\min}=-17\)

Dấu bằng xảy ra khi \(\left\{\begin{matrix} x-y+1=0\\ y-4=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x=3\\ y=4\end{matrix}\right.\)

b)

\(B=x^2+6y^2+14z^2-8yz+6xz-4xy\)

\(\Leftrightarrow B=(x-2y+3z)^2+2y^2+5z^2+4yz\)

\(\Leftrightarrow B=(x-2y+3z)^2+2(y+z)^2+z^2\)

Ta thấy \((x-2y+3z)^2; (y+z)^2; z^2\geq 0\forall x,y,z\in\mathbb{R}\)

\(\Rightarrow B\geq 0\Leftrightarrow B_{\min}=0\)

Dấu bằng xảy ra khi \(\left\{\begin{matrix} x-2y+3z=0\\ y+z=0\\ z=0\end{matrix}\right.\Leftrightarrow x=y=z=0\)

13 tháng 6 2017

a)\(x^2-4x+y^2-2y+10=\left(x^2-4x+4\right)+\left(y^2-2y+1\right)+5\)

\(=\left(x-2\right)^2+\left(y-1\right)^2+5\ge5\)

Dấu "=" xảy ra khi x=2;y=1

b) tương tự câu a

16 tháng 6 2017

c)\(x^2+2y^2-6x-8y+2xy+5=x^2+2y^2+2x\left(y-3\right)-8y+5\)

\(=x^2+2x\left(y-3\right)+\left(y^2-6x+9\right)+\left(y^2-2x+1\right)-5\)

\(=x^2+2x\left(y-3\right)+\left(y-3\right)^2+\left(y-1\right)^2-5\)

\(=\left(x+y-3\right)^2+\left(y-1\right)^2-5\ge-5\)

Dấu "=" xảy ra khi x=2;y=1