Giải các phương trình sau:

a)...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 10 2019

a) Cách 1: Khai triển HĐT rút gọn được 3 x 2  + 6x + 7 = 0

Vì (3( x 2  + 2x + 1) + 4 < 0 với mọi x nên giải được  x ∈ ∅

Cách 2. Chuyển vế đưa về ( x   +   3 ) 3 =  ( x   - 1 ) 3  Û x + 3 = x - 1

Từ đó tìm được x ∈ ∅

b) Đặt  x 2  = t với t ≥ 0 ta được  t 2  + t - 2 = 0

Giải ra ta được t = 1 (TM) hoặc t = -2 (KTM)

Từ đó tìm được x = ± 1

c) Biến đổi được 

d) Biến đổi về dạng x(x - 2) (x - 4) = 0. Tìm được x{0; 2; 4}

NM
2 tháng 11 2021

ta có :

undefined

\(P=\left(\frac{x-1}{x+3}+\frac{2}{x-3}+\frac{x^2+3}{9-x^2}\right):\left(\frac{2x-1}{2x+1}-1\right)\)\(\left(đkcđ:x\ne\pm3;x\ne-\frac{1}{2}\right)\)

\(=\left(\frac{\left(x-1\right).\left(x-3\right)+2.\left(x+3\right)-\left(x^2+3\right)}{x^2-9}\right):\left(\frac{2x-1-\left(2x+1\right)}{2x+1}\right)\)

\(=\frac{x^2-4x+3+2x+6-x^2-3}{x^2-9}:\frac{-2}{2x+1}\)

\(=\frac{-2x-6}{x^2-9}.\frac{2x+1}{-2}\)

\(=\frac{-2\left(x+3\right)}{\left(x-3\right).\left(x+3\right)}.\frac{2x+1}{-2}\)

\(=\frac{2x+1}{x-3}\)

b)\(\left|x+1\right|=\frac{1}{2}\Leftrightarrow\orbr{\begin{cases}x+1=\frac{1}{2}\\x+1=-\frac{1}{2}\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-\frac{1}{2}\left(koTMđkxđ\right)\\x=-\frac{3}{2}\left(TMđkxđ\right)\end{cases}}}\)

thay \(x=-\frac{3}{2}\)  vào P tâ đc:   \(P=\frac{2x+1}{x-3}=\frac{2.\left(-\frac{3}{2}\right)+1}{-\frac{3}{2}-3}=\frac{4}{9}\)

c)ta có:\(P=\frac{x}{2}\Leftrightarrow\frac{2x+1}{x-3}=\frac{x}{2}\)

\(\Rightarrow2.\left(2x+1\right)=x.\left(x-3\right)\)

\(\Leftrightarrow4x+2=x^2-3x\)

\(\Leftrightarrow x^2-7x-2=0\)

\(\Leftrightarrow x^2-2.\frac{7}{2}+\frac{49}{4}-\frac{57}{4}=0\)

\(\Leftrightarrow\left(x-\frac{7}{2}\right)^2-\frac{57}{4}=0\)

\(\Leftrightarrow\left(x-\frac{7}{2}-\frac{\sqrt{57}}{2}\right).\left(x-\frac{7}{2}+\frac{\sqrt{57}}{2}\right)\)

bạn tự giải nốt nhé!!

d)\(x\in Z;P\in Z\Leftrightarrow\frac{2x+1}{x-3}\in Z\Leftrightarrow\frac{2x-6+7}{x-3}=2+\frac{7}{x-3}\in Z\)

\(2\in Z\Rightarrow\frac{7}{x-3}\in Z\Leftrightarrow x-3\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)

bạn tự làm nốt nhé

9 tháng 3 2022

a, \(\left(\dfrac{x^2-4x+3+2x+6-x^2-3}{\left(x+3\right)\left(x-3\right)}\right):\left(\dfrac{2x-1-2x-1}{2x+1}\right)\)

\(=\dfrac{-2x+6}{\left(x+3\right)\left(x-3\right)}:\dfrac{-2}{2x+1}=\dfrac{-2\left(x-3\right)\left(2x+1\right)}{-2\left(x+3\right)\left(x-3\right)}=\dfrac{2x+1}{x+3}\)

b, \(\left|x+1\right|=\dfrac{1}{2}\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}-1\\x=-\dfrac{1}{2}-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{2}\left(ktmđk\right)\\x=-\dfrac{3}{2}\end{matrix}\right.\)

Thay x = -3/2 ta được \(\dfrac{2\left(-\dfrac{3}{2}\right)+1}{-\dfrac{3}{2}+3}=\dfrac{-2}{\dfrac{3}{2}}=-\dfrac{4}{3}\)

Câu 1: Số dư khi chia \(43^2+43.17\) cho 60 là: Câu 2: Số thực x để biểu thức \(A=(5x-3)^2-\dfrac{3}{4}\) đạt giá trị nhỏ nhất là (Nhập kết quả dưới dạng số thập phân gọn nhất) Câu 3: Một hình chữ nhật có chiều dài gấp hai lần chiều rộng. Biết diện tích hình chữ nhật là 8cm2 thì chiều rộng hình chữ nhật là: Câu 4: Hai tam giác ABC và A’B’C’ là hai tam giác đồng dạng với tỉ...
Đọc tiếp

Câu 1: Số dư khi chia \(43^2+43.17\) cho 60 là:

Câu 2: Số thực x để biểu thức \(A=(5x-3)^2-\dfrac{3}{4}\) đạt giá trị nhỏ nhất là

(Nhập kết quả dưới dạng số thập phân gọn nhất)

Câu 3: Một hình chữ nhật có chiều dài gấp hai lần chiều rộng. Biết diện tích hình chữ nhật là 8cm2 thì chiều rộng hình chữ nhật là:

Câu 4: Hai tam giác ABC và A’B’C’ là hai tam giác đồng dạng với tỉ số đồng dạng là \(k=\dfrac{2}{5}\).Nếu chu vi của tam giác A’B’C’ là 40cm thì chu vi của tam giác ABC là:

Câu 5: Cho một hình vuông có diện tích bằng diện tích của hình chữ nhật có chu vi là 104cm và chiều dài bằng 2,25 lần chiều rộng. Độ dài cạnh hình vuông đó là:

Câu 6: Tổng tất cả các số nguyên dương n khác 2 sao cho n-2 là ước của n2+1 là

Câu 7: Biểu thức \(P=\dfrac{1}{x^2+x+1}\)​ đạt giá trị lớn nhất khi x=

(Nhập kết quả dưới dạng số thập phân gọn nhất)

Câu 8: Cho tam giác ABC cân tại A có chu vi là 80cm. Gọi I là giao điểm của các đường phân giác trong của tam giác, AI cắt BC tại D. Biết \(AI=\dfrac{3}{4}AD\). Độ dài cạnh BC là:

Câu 9: Cho \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0; (x,y,z\neq 0)\). Giá trị của biểu thức \(\dfrac{yz}{x^2} +\dfrac{xz}{y^2} +\dfrac{xy}{z^2}\)​ là:

Câu 10: Cho \(x^2+y^2=\dfrac{50}{7}xy\) với y>x>0. Giá trị của biểu thức \(P=\dfrac{x-y}{x+y}\) là:

(Nhập kết quả dưới dạng số thập phân gọn nhất)

1
4 tháng 6 2018

Ai giúp mk với mk đang cần gấp

Mk làm được hết

mà vẫn cứ sai hoài à

tìm mãi ko thấy lỗi sai

18 tháng 1 2017

Nhìn sơ qua thì thấy bài 3, b thay -2 vào x rồi giải bình thường tìm m

18 tháng 1 2017

Bài 2:

a) \(x+x^2=0\)

\(\Leftrightarrow x\left(x+1\right)=0\)

\(\Leftrightarrow\hept{\begin{cases}x=0\\x+1=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=0\\x=0-1\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=0\\x=-1\end{cases}}\)

b) \(0x-3=0\)

\(\Leftrightarrow0x=3\)

\(\Rightarrow vonghiem\)

c) \(3y=0\)

\(\Leftrightarrow y=0\)

18 tháng 5 2017

giải đc sao pn dễ mk

19 tháng 5 2017

chẳng ai giải, thôi mình giải vậy!

a) Đặt \(y=x^2+4x+8\),phương trình có dạng:

\(t^2+3x\cdot t+2x^2=0\)

\(\Leftrightarrow t^2+xt+2xt+2x^2=0\)

\(\Leftrightarrow t\left(t+x\right)+2x\left(t+x\right)=0\)

\(\Leftrightarrow\left(2x+t\right)\left(t+x\right)=0\)

\(\Leftrightarrow\left(2x+x^2+4x+8\right)\left(x^2+4x+8+x\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=-2\\x=-4\end{cases}}\)vậy tập nghiệm của phương trình là:S={-2;-4}

b) nhân 2 vế của phương trình với 12 ta được:

\(\left(6x+7\right)^2\left(6x+8\right)\left(6x+6\right)=72\)

Đặt y=6x+7, ta được:\(y^2\left(y+1\right)\left(y-1\right)=72\)

giải tiếp ra ta sẽ được S={-2/3;-5/3}

c) \(\left(x-2\right)^4+\left(x-6\right)^4=82\)

S={3;5}

d)s={1}

e) S={1;-2;-1/2}

f) phương trình vô nghiệm

23 tháng 3 2020

a)\(2+\frac{3}{x-5}=1\)

\(\Rightarrow\frac{3}{x-5}=-1\)

\(\Rightarrow3=-x+5\)

\(\Leftrightarrow x+3=5\)

\(\Rightarrow x=2\)

27 tháng 2 2020

a)<=>\(\left(x^3+x^2-2x\right)+\left(3x^2+3x-6\right)=0\)

<=>\(x\left(x^2+x-2\right)+3\left(x^2+x-2\right)=0\)

<=>\(\left(x^2+x-2\right)\left(x+3\right)=0\)

Phương trình trên bạn tự bấm máy tính nha

<=>\(\left(x-1\right)\left(x+2\right)\left(x+3\right)=0\)

Đến đây tự làm đc rồi

Vậy x=1 hoặc -2 hoặc -3

b)<=>\(\left(x^3-4x^2+4x\right)+\left(x^2-4x+4\right)=0\)

<=>\(x\left(x^2-4x+4\right)+\left(x^2-4x+4\right)=0\)

<=>\(\left(x+1\right)\left(x^2-4x+4\right)=0\)

<=>\(\left(x+1\right)\left(x-2\right)^2=0\)

<=>\(\orbr{\begin{cases}x=-1\\x=2\end{cases}}\)

c)Câu c mik chưa làm đc

27 tháng 2 2020

Đáp án câu C:

\(x^3-4x^2+5x=0\)

\(\Leftrightarrow x\left(x^2-4x^2+5x\right)=0\)

\(Tacó:x^2-4x+5=x^2-4x+2^2+1\)

                                       \(=\left(x-2\right)^2+1\)

       \(Mà\left(x-2\right)^2\ge0\)

       \(Nên\left(x-2\right)^2+1\ge1\)

\(Khiđó:x\left(x^2-4x+5\right)=0\)

        \(\Leftrightarrow x=0\)