Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(Do\)\(\left|2009^{2007}x+2010\right|\ge0\)
\(\Rightarrow\left|2009^{2007}x+2010\right|\)nhỏ nhất \(=0\)
Vậy \(\left|2009^{2007}x+2010\right|\)nhỏ nhất =0 khi \(x=\frac{2010}{2009^{2007}}\)
Ta có:|20092007x+2010|>0 với mọi x
=>GTNN của biểu thức bằng 0<=>|20092007x+2010|=0<=>20092007x=-2010
<=>x=-2010/20092007
A=|x-2008|+|2009-x|+|y-2010|+|x-2011|+2011
≥|x-2008+2009-x|+|y-2010|+|x-2011|+2011
= |y-2010|+|x-2011|+2012≥2012
Dấu = xảy ra khi : {y−2010=0x−2011=0{y−2010=0x−2011=0
<=> {y=2010x=2011{y=2010x=2011
Vay GTNN cua A=2012 khi {x=2011;y=2010
A=/x-2008/+/2009-x/+/y-2010/+/x-2011/+2011
≥/x-2008+2009-x/+/y-2010/+/x-2011/+2011
= /y-2010/+/x-2011/+2012≥2012
Dau bang xay ra khi : \(\left\{{}\begin{matrix}y-2010=0\\x-2011=0\end{matrix}\right.\)
<=> \(\left\{{}\begin{matrix}y=2010\\x=2011\end{matrix}\right.\)
Vay GTNN cua A=2012 khi \(\left\{{}\begin{matrix}x=2011\\y=2010\end{matrix}\right.\)